PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three-Dimensional Elastic Behavior of Oriental Plane (Platanus orientalis L.) Wood and Investigation Via Finite Element Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wood is an anisotropic material with a complex structure. It is very difficult to examine the properties of complex structured materials. Finite element analysis is a technique that can be used to analyze the mechanical behavior of wood and wood-based materials. The objective of this study is to determine the mechanical properties of Oriental plane (Platanus orientalis L.) wood both experimentally and using finite element analysis. For tensile strength and compressive strength, with the aim of determining the wood’s behavior depending on its anisotropic axes, samples were prepared in three axial directions: radial, tangential and longitudinal. Under the same conditions and with the same dimensions, longitudinal samples were modeled in a computer environment using finite element analysis. ANSYS Multiphysics/LS-DYNA was used for simulation. It was determined that the laboratory results and the simulation results were in good agreement, with a similarity ratio of over 90%.
Rocznik
Strony
Art. no. 192553
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Department of Forestry and Forest Products, Gaziosmanpaşa University, Almus Vocational School, Turkey
  • Department of Forest Industry Engineering, Faculty of Forestry Bartın University, Turkey
  • Department of Industrial Engineering, Faculty of Engineering and Natural Sciences, İskenderun Technical University, Turkey
  • Department of Forest Engineering, Faculty of Forestry, Karabük University, Turkey
Bibliografia
  • Alhijazi M., Zeeshan Q., Qin Z., Safaei B., Asmael M. [2020]: Finite element analysis of natural fibers composites: A review. Nanotechnology Reviews, 9 [1], 853-875. DOI:10.1515/ntrev-2020-0069
  • Arslantürk C., Kara Y. A. [2012]: Numerical methods lecture notes (in Turkish). Engineering Faculty, Atatürk University, Erzurum, Türkiye
  • Collins S., Jaaranen J., Fink G. [2023]: Modelling the effect of three-dimensional grain angle on the tension strength of birch wood. World Conference on Timber Engineering [pp. 428-434]. DOI: 10.52202/069179-0058
  • Dos Santos, C. L., Morais, J. J. L., De Jesus, A. M. P. [2015]: Mechanical behaviour of wood T-joints. Experimental and numerical investigation. Frattura ed Integrità Strutturale, 9 [31], 23-37. DOI: 10.3221/IGF-ESIS.31.03
  • El Houjeyri, I., Thi, V. D., Oudjene, M., Ottenhaus, L. M., Khelifa, M., Rogaume, Y. [2021]: Coupled nonlinear-damage finite element analysis and design of novel engineered wood products made of Oak hardwood. European Journal of Wood and Wood Products, 79, 29-47. DOI: 10.1007/s00107-020-01617-7
  • Fajdiga G., Rajh D., Nečemer B., Glodež S., Šraml M. [2019]: Experimental and numerical determination of the mechanical properties of spruce wood. Forests, 10 [12], 1140. DOI: 10.3390/f10121140
  • Fu Z., Chen J., Zhang Y., Xie F., Lu Y. [2023]: Review on wood deformation and cracking during moisture loss. Polymers, 15 [15], 3295. DOI:10.3390/ polym15153295
  • Fu W. L., Guan H. Y., Kei S. [2021]: Effects of moisture content and grain direction on the elastic properties of beech wood based on experiment and finite element method. Forests, 12 [5], 610. DOI: 10.3390/f12050610
  • Güntekin E., Yılmaz T. [2013]: Eğilmeye çalışan bu-daklı kirişlerin sonlu elemanlar modelleri. SDU Faculty of Forestry Journal, 14, 53-7.
  • Gürer C., Akbulut H. Çetin, S. [2008]: Tek açıklıklı kemer sistemli Rize köprülerinin sonlu elemanlar yöntemi ile analizi (Analysis of single span arch system Rize bridges by finite element method). 1. Bridge and Viaducts Symposium. November 26-28. Antalya, Türkiye
  • Hajdarević S., Busuladžić I. [2015]: Stiffness analysis of wood chair frame. Procedia Engineering, 100, 746-755. DOI: 10.1016/j.proeng.2015.01.428
  • Hu W., Chen B., Zhang T. [2021]: Experimental and numerical studies on mechanical behaviors of beech wood under compressive and tensile states. Wood Research, 66, 27-38. DOI: 10.37763/ wr.1336-4561/66.1.2738
  • Hu W., Wan H., Guan H. [2019]: Size effect on the elastic mechanical properties of beech and its application in finite element analysis of wood structures. Forests, 10 [9], 783. DOI: 10.3390/f10090783
  • Kandler G., Füssl J., Eberhardsteiner J. [2015]: Stochastic finite element approaches for wood-based products: theoretical framework and review of methods. Wood Science and Technology, 49, 1055-1097. DOI:10.1007/s00226-015-0737-5
  • Kaygın B. Yörür H. Uysal B. [2016]: Simulating strength behaviors of corner joints of wood constructions by using finite element method. Drvna Industrija, 67 [2], 133-140. DOI: 10.5552/ drind.2016.1503
  • Keunecke D. [2008]: Elasto-mechanical characterizations of yew and spruce wood with regard to structure property relationships. PhD thesis, University of Hamburg, Germany. DOI: 10.3929/ethz-a-005629078
  • Meghlat E. M., Oudjene M., Ait-Aider H., Batoz J. L. [2013]: A new approach to model nailed and screwed timber joints using the finite element method. Construction and Building Materials, 41, 263-269. DOI: 10.1016/j.conbuildmat.2012.11.068
  • Moses D. M., Prion H.G.L. [2004]: Stress and failure analysis of wood composites: A new model. Composites: Part B: Engineering, 35: 251–261. DOI: 10.1016/j.compositesb.2003.10.002s
  • Ostapska K., Malo K. A. [2020]: Wedge splitting test of wood for fracture parameters estimation of Norway Spruce. Engineering Fracture Mechanics, 232, 107024. DOI:10.1016/j.engfracmech.2020.107024
  • Ostapska K., Malo K. A. [2021]: Crack path tracking using DIC and XFEM modelling of mixed-mode fracture in wood. Theoretical and Applied Fracture Mechanics, 112, 102896. DOI:10.1016/j.tafmec.2021.102896
  • Ożyhar T. [2013]: Moisture and time dependent orthotropic mechanical characterization of beech wood. PhD thesis. Technical University of Munich, Germany. DOI: 10.3929/ethz-a-009787740
  • Pěnčík J. [2015]: Modelling of Experimental Tests of Wooden Specimens from Scots Pine [Pinus sylvestris] with the Help of Anisotropic Plasticity Material Model. Wood Industry/Drvna Industrija, 66 [1]. DOI: 10.5552/drind.2015.1362
  • Serrano E. A. [2004]: Numerical study of the shear-strength-predicting capabilities of test specimens for wood–adhesive bonds. International Journal of Adhesion & Adhesives, 24: 23-35. DOI: 10.1016/s0143-7496(03)00096-4
  • Sheng H., Feng F., Lan-Ying L., Ping-Xiang C. [2012]: Application of finite element analysis in properties test of finger-jointed lumber. Proceedings of the 55th International Convention of Society of Wood Science and Technology. Au-gust 27–31. Beijing, China
  • Tabiei A., Wu J. [2000]: Three-dimensional nonlinear orthotropic finite element material model for wood. Composite Structures, 50:143-149. DOI: 10.1016/s0263-8223(00)00089-1
  • Timbolmas C., Rescalvo F. J., Portela M., Bravo R. [2022]: Analysis of poplar timber finger joints by means of Digital Image Correlation [DIC] and fi-nite element simulation subjected to tension load-ing. European Journal of Wood and Wood Prod-ucts, 80 [3], 555-567. DOI: 10.1007/s00107-022-01806-6
  • Toson B., Viot P., Pesqué J. J. [2014]: Finite element modeling of Balsa wood structures under severe loadings. Engineering Structures, 70, 36-52. DOI: 10.1016/j.engstruct.2014.03.017
  • Toussaint E., Fournely E., Pitti R. M., Grédiac M. [2016]: Studying the mechanical behavior of notched wood beams using full-field measurements. Engineering Structures, 113, 277-286. DOI: 10.1016/j.engstruct.2016.01.052
  • Vasic S., Smith I., Landis E. [2005]: Finite element techniques and models for wood fracture mechanics. Wood Science and Technology, 39: 3-17. DOI: 10.1007/s00226-004-0255-3
  • Wang Y., Lee S. H. [2014]: Design and analysis on interference fit in the hardwood dowel-glued joint by finite element method. Procedia Engineering, 79, 166-172. DOI: 10.1016/j.proeng.2014.06.326
  • Warguła Ł., Wojtkowiak D., Kukla M., Talaśka K. [2020]: Symmetric nature of stress distribution in the elastic-plastic range of Pinus L. pine wood samples determined experimentally and using the finite element method (FEM). Symmetry, 13 [1], 39. DOI: 10.3390/sym13010039
  • Yörür H. [2012]: Determination of technological properties in simulation (ANSYS) occasion for wooden corner joints. PhD Thesis. Bartın University, Türkiye.
  • Zhong W., Zhang Z., Chen X., Wei Q., Chen G., Huang X. [2021]: Multi-scale finite element simu-lation on large deformation behavior of wood under axial and transverse compression conditions. Acta Mechanica Sinica, 37, 1136-1151. DOI:10.1007/s10409-021-01112-z
  • Zulkifli E., Kusumaningrum P., Rahmi D. P. [2021]: Experimental study and numerical model of spruce and teak wood strength properties under compressive high strain rate loading. Journal of Engineering and Technological Sciences, 53 [1]. DOI: 10.5614/j.eng.technol.sci.2021.53.1.3
  • List of standards
  • DIN 52185:1976 Testing of wood; compression test parallel to grain standard by Deutsches Institut Fur Normung E.V. (German National Standard), Germany
  • DIN 52188:1979 Testing of wood; determination of ultimate tensile stress parallel to grain stand-ard by Deutsches Institut Fur Normung E.V. (German National Standard) Germany
  • DIN 52192:1979 Testing of wood; compression test perpendicular to grain standard by Deutsches In-stitut Fur Normung E.V. (German National Standard) Germany
  • TS 2475:1976 Wood – Determination of Ultimate Tensile Stress Parallel to Grain. Turkish Standards Institution (TSE), Türkiye
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6d2d6b7-d591-4987-a0fa-e2751bf88358
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.