PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of anthropomorphic dual arm robot with distinct degrees of freedom for coordinated operations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Development of assistive robots for helping the disabled is a field of research that has gathered attention recently. According to surveys, about one billion people in the world population have some kind of disability. Dual arm robots are a suitable solution for helping people with mobility impairments. The current development in the field of dual-arm robots is focused mainly in the industrial field to carry out cyclic tasks. This includes activities such as pick and place, assembling parts and doing other industrial operations. Unlike human arms, these dual arm robots lack versatility in doing a wide variety of tasks with adequate coordination between the arms. Due to these constraints, industrial dual arm robots cannot be directly implemented for assisting the disabled. This paper focuses on designing a compact dual arm robot which closely mimics human arms to do coordinated tasks with lesser Degrees of Freedom (DoF). Therefore, the developed robot extends its capabilities from industrial applications to daily life activities. Closed loop control is used in actuating the proposed 9 DoF dual arm robot with distinct DoF. Target position is acquired using image processing. Hand to hand coordination in various operations such as pick and place, transferring objects, serving food, etc. has successfully experimented.
Twórcy
  • Department of Mechanical Engineering, National Institute of Technology Calicut, India
  • Department of Mechanical Engineering, National Institute of Technology Calicut, India
  • Department of Mechanical Engineering, National Institute of Technology Calicut, India
  • Department of Mechanical Engineering, National Institute of Technology Calicut, India
Bibliografia
  • [1] J. Tarek, Z. Chiheb, M. Aref, “Modeling and Simulation of a Dual Arm Robot During the Compensation of an External Force”, Arabian Journal for Science and Engineering, vol. 43, no. 9, 2018, 4713–4725 DOI: 10.1007/s13369-018-3089-2.
  • [2] A. Banerji, R. Banavar, D. Venkatesh, “A Non-Dexterous Dual Arm Robot’s Feasible Orientations Along Desired Trajectories: Analysis & Synthesis”. In: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, 4391–4396 DOI: 10.1109/CDC.2005.1582853.
  • [3] P. Tsarouchi, S. Makris, G. Michalos, M. Stefos, K. Fourtakas, K. Kaltsoukalas, D. Kontrovrakis,G. Chryssolouris, “Robotized Assembly Process Using Dual Arm Robot”, Procedia CIRP, vol. 23, 2014, 47–52 DOI: 10.1016/j.procir.2014.10.078.
  • [4] Y. Huang, S. Li, S. Li, Y. Ke,“Design and Implementation of Dual-Arm Robot with Homogeneous Compliant Joint”. In: 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 2, 2017, 265–270 DOI: 10.1109/IHMSC.2017.172.
  • [5] D. Lee, H. Park, J. Park, M. Baeg, J. Bae, “Design of an anthropomorphic dual-arm robot with biologically inspired 8-DOF arms”, Intelligent Service Robotics, vol. 10, no. 2, 2017, 137–148 DOI: 10.1007/s11370-017-0215-z.
  • [6] C. Park, K. Park, “Design and kinematics analysis of dual arm robot manipulator for precision assembly”. In: 2008 6th IEEE International Conference on Industrial Informatics, 2008, 430–435 DOI: 10.1109/INDIN.2008.4618138.
  • [7] “ABB’s Collaborative Robot – YuMi – Industrial Robots From ABB Robotics”. https://new.abb.com/products/robotics/industrial-robots/irb14000-yumi. Accessed on: 2020-03-10.
  • [8] D. A. Winter, Biomechanics and Motor Control of Human Movement, John Wiley & Sons, Inc., 2009.
  • [9] R. K. Mittal, I. J. Nagrath, Robotics and Control, Tata Mc Graw-Hill, 2003.
  • [10] T. F. Coleman, Y. Li, “On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds”, Mathematical Programming, vol. 67, no. 1, 1994, 189–224 DOI: 10.1007/BF01582221.
  • [11] R. Budynas, K. Nisbett, Shigley’s Mechanical Engineering Design, McGraw-Hill Education, 2014.
  • [12] J. J. Craig, Introduction to Robotics: Mechanics and Control, Pearson, 2004.
  • [13] T. Liu, Y. Lei, L. Han, W. Xu, H. Zou, “Coordinated Resolved Motion Control of Dual-Arm Manipulators with Closed Chain:”, International Journal of Advanced Robotic Systems, vol. 13, no. 3, 2016 DOI: 10.5772/63430.
  • [14] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 779–788 DOI: 10.1109/CVPR.2016.91.
  • [15] K. Shengzheng, H. Wu, L. Yao, D. Li, “Coordinated workspace analysis and trajectory planning of redundant dual-arm robot”. In: 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2016, 178–183 DOI: 10.1109/URAI.2016.7625731.
  • [16] G. Bradski, A. Kaehler, Learning OpenCV. Computer Vision with the OpenCV Library, O’Reilly Media, Inc., 2008.
  • [17] A. Sanin, C. Sanderson, B. C. Lovell, “Shadow detection: A survey and comparative evaluation of recent methods”, Pattern Recognition, vol. 45, no. 4, 2012, 1684–1695 DOI: 10.1016/j.patcog.2011.10.001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6cf3d67-ffe6-4157-864e-9e7b1c83a850
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.