PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rola wodoru w zintegrowanym systemie energetycznym Unii Europejskiej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The role of hydrogen in the integrated energetic system of European Union
Języki publikacji
PL
Abstrakty
PL
Osiągnięcie przez Unię Europejską neutralności klimatycznej do 2050 roku wymaga transformacji i modyfikacji europejskiego systemu energetycznego. Wykorzystanie w tym celu wodoru ma pozwolić na dekarbonizację oraz redukcję emisji gazów cieplarnianych. Priorytetem jest otrzymywanie odnawialnego wodoru (green hydrogrn). W okresie przejściowym dopuszcza się także wykorzystanie wodoru niskowęglowego (blue hydrogen).
EN
The increased use of fossil fuels and growing greenhouse gas emissions leads to environmental problems. To reach climate neutrality by 2050 it is necessary to transform the EU’s energy system. The EU Strategy for Energy System Integration [3], the report published by the EU Commission in 2020, provides the pathway for a new integrated energy system transition. In the new integrated energy system, the development of clean hydrogen (green hydrogen) using renewable energy plays a main role. However, in the transition period, hydrogen based on fossil fuels (blue hydrogen) will be also used to decrease emissions and develop a manageable market. The EU Hydrogen Strategy [4] presents a three step plan to take advantage of hydrogen potential. Hydrogen has received worldwide attention as a clean energy solution with many applications in the industry, power, and transportation sectors. Hydrogen is a carbon free carrier and does not emit any pollution. Its role is essential for the EU’s commitment to achieve carbon neutrality by proper investments, regulations, research, and innovations. According to these plans, the constructed electrolyzers will be used for the production of renewable green hydrogen, then local hotspots will be connected for end users into a large European hydrogen infrastructure. Finally, mature clean hydrogen technologies will be utilized at a large scale. Generally, the European investments by 2050 in renewable green hydrogen are about €180 - 470 billion, and for low carbon fossil based blue hydrogen €3 - €18 billion [14]. As predicted, clean hydrogen may meet 24% of world energy requirements by 2050. This study presents an energy transition pathway for sustainable development by means of hydrogen energy. Detailed information on hydrogen production methods and costs, storage, and applications is provided. The new technological directions in hydrogen production, storage, and utilization are described. The integration of hydrogen production from fossil fuels with CCS/CCUS technologies is discussed. Linking natural gas reforming with CCUS technologies is the cheapest way to decarbonize the EU energy system by 2050 in comparison with the all electric approach. 80 to 90% of CO2 emissions can be removed using CCUS technologies [16]. Investment costs of hydrogen production by electrolysis of water are much higher than for hydrogen production from natural gas integrated with CCUS processes [15]. CCUS technologies represent strategic value in the transition process to climate neutrality. CCUS can favour hydrogen production from natural gas or coal and provide low carbon hydrogen at a lower cost in the near future. Currently, the cost of hydrogen production integrated with CCUS is much lower than hydrogen production based on electrolysis and renewable sources of energy. It is estimated that CCUS integrated with hydrogen production will be a competitive solution even with the declining costs of electrolyzers and renewable electricity. The EU policy ultimately insists on the production and development of renewable hydrogen (green hydrogen) and hydrogen produced from fossil fuels coupled with CCUS technologies (blue hydrogen).
Słowa kluczowe
Rocznik
Tom
Strony
5--16
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
Bibliografia
  • [1] European Environment Agency, The European Green Deal — European Environment Agency, 2019. https://www.eea.europa.eu/policy-documents/com-2019-640-final (accessed November 8, 2022).
  • [2] GROWTH - Powering a climate-neutral economy: Commission sets out plans for the energy system of the future and clean hydrogen, https://ec.europa.eu/newsroom/growth/items/682535 (accessed November 8, 2022).
  • [3] Powering a climate-neutral economy: An EU Strategy for Energy System Integration, 2020. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2020:299:FIN (accessed November 8, 2022).
  • [4] A hydrogen strategy for a climate-neutral Europe, 2020. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301 (accessed November 8, 2022).
  • [5] H. Idriss, M. Scott, V. Subramani, Introduction to hydrogen and its properties, in: V. Subramani, A. Basile, T.N. Veziroğlu (Eds.), Compendium of Hydrogen Energy, Woodhead Publishing, Oxford, 2015: pp. 3–19. https://doi.org/10.1016/B978-1-78242-361-4.00001-7.
  • [6] Canada - Electricity generation by source, IEA. https://www.iea.org/countries/canada (accessed November 8, 2022).
  • [7] T.M. Gür, Review of electrical energy storage technologies, materials, and systems: challenges and prospects for large-scale grid storage, Energy Environ. Sci. 11 (2018) 2696–2767. https://doi.org/10.1039/C8EE01419A.
  • [8] J. Moya, D. Tsiropoulos, D. Tarvydas, W. Nijs, Hydrogen use in EU decarbonisation scenarios, https://joint-research-centre.ec.europa.eu/jrc-news/hydrogen-use-eu-decarbonisation-scenarios-2019-04-17_en (accessed November 8, 2022).
  • [9] H. Ishaq, I. Dincer, C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities, International Journal of Hydrogen Energy. (2021). https://doi.org/10.1016/j.ijhydene.2021.11.149.
  • [10] J.H. Chaffin, S.M. Bobbio, H.I. Inyang, L. Kaanagbara, Hydrogen Production by Plasma Electrolysis, Journal of Energy Engineering. 132 (2006) 104–108. https://doi.org/10.1061/(ASCE)0733-9402(2006)132:3(104).
  • [11] M. Ahmed, I. Dincer, A review on photoelectrochemical hydrogen production systems: Challenges and future directions, International Journal of Hydrogen Energy. 44 (2019) 2474–2507. https://doi.org/10.1016/j.ijhydene.2018.12.037.
  • [12] Y. Kalinci, A. Hepbasli, I. Dincer, Biomass-based hydrogen production: A review and analysis, International Journal of Hydrogen Energy. 34 (2009) 8799–8817. https://doi.org/10.1016/j.ijhydene.2009.08.078.
  • [13] M. Yu, K. Wang, H. Vredenburg, Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen, International Journal of Hydrogen Energy. 46 (2021) 21261–21273. https://doi.org/10.1016/j.ijhydene.2021.04.016.
  • [14] Fuel Cells and Hydrogen 2 Joint Undertaking (EU body or agency) Now known as, Hydrogen Roadmap Europe: a sustainable pathway for the European energy transition, Publications Office of the European Union, LU, 2016. https://data.europa.eu/doi/10.2843/341510 (accessed November 8, 2022).
  • [15] IEA, Technology Roadmap - Hydrogen and Fuel Cells – Analysis, https://www.iea.org/reports/technology-roadmap-hydrogen-and-fuel-cells (accessed November 9, 2022).
  • [16] Pöyry Point of View, Fully Decarbonising Europe’s Energy System by 2050, https://informaconnect.com/fully-decarbonising-europes-energy-system-by-2050/ (accessed November 9, 2022).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6ccc07f-07b0-44b1-82df-5fb88785015b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.