PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Genome-wide identification and characterisation of ammonium transporter gene family in barley

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitrogen (N) is an essential macronutrient for the growth and development of plants, but excessive use of nitrogen fertiliser in agriculture can result in environmental pollution. As a preferred nitrogen form, ammonium (NH4+) is absorbed from the soil by the plants through ammonium transporters (AMTs). Therefore, it is important to explore AMTs to improve the efficiency of plant N utilisation. Here, we performed a comprehensive genome-wide analysis to identify and characterise the AMT genes in barley (HvAMTs), which is a very important cereal crop. A total of seven AMT genes were identified in barley and further divided into two subfamilies (AMT1 and AMT2) based on phylogenetic analysis. All HvAMT genes were distributed on five chromosomes with only one tandem duplication. HvAMTs might play an important role in plant growth, development, and various stress responses, as indicated by cis-regulatory elements, miRNAs, and protein interaction analysis. Further, we analysed the expression pattern of HvAMTs in various developmental plant tissues, which indicated that AMT1 subfamily members might play a major role in the uptake of NH4+ from the soil through the roots in barley. Altogether, these findings might be helpful to improve the barley crop with improved nitrogen use efficiency, which is not only of great significance to the crop but also for land and water as it will reduce N fertiliser pollution in the surrounding ecosystem.
Wydawca
Rocznik
Tom
Strony
220--233
Opis fizyczny
Bibliogr. 135 poz., rys., tab.
Twórcy
  • Adam Mickiewicz University, Faculty of Biology, Department of Plant Physiology, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
  • Adam Mickiewicz University, Faculty of Biology, Department of Plant Physiology, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
  • Adam Mickiewicz University, Faculty of Biology, Department of Plant Physiology, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
  • Adam Mickiewicz University, Faculty of Biology, Department of Plant Physiology, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
  • Adam Mickiewicz University, Faculty of Biology, Department of Plant Physiology, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
Bibliografia
  • Alptekin, B., Akpinar, B.A. and Budak, H. (2017) “A comprehensive prescription for plant miRNA identification,” Frontiers in Plant Science, 7, 2058. Available at: https://doi.org/10.3389/fpls.2016.02058.
  • Andersen, E.J. et al. (2016) “Diversity and evolution of disease resistance genes in barley (Hordeum vulgare L.),” Evolutionary Bioinformatics, 12, S38085. Available at: https://doi.org/10.4137/ebo.s38085.
  • Aslam, M. et al. (2020) “Aux/IAA14 regulates microRNA-mediated cold stress response in Arabidopsis roots,” International Journal of Molecular Sciences, 21(22), 8441. Available at: https://doi.org/10.3390/ijms21228441.
  • Bailey, T. and Noble, W.S. (no date) Data Submission Form. MEME – Multiple Em for Motif Elicitation. Version 5.5.3. Available at: https://meme-suite.org/meme/tools/meme (Accessed: April 4, 2022).
  • Bartel, D.P. (2004) “MicroRNAs: Genomics, biogenesis, mechanism, and function,” Cell, 116(2), pp. 281–297. Available at: https://doi.org/10.1016/s0092-8674(04)00045-5.
  • Becker, D. et al. (2002) “Expression of the NH 4+ -transporter gene LEAMT1;2 is induced in tomato roots upon association with N2 -fixing bacteria,” Planta, 215, pp. 424–429. Available at: https://doi.org/10.1007/s00425-002-0773-x.
  • Bu, Y., Takano, T. and Liu, S. (2019) “The role of ammonium transporter (AMT) against salt stress in plants,” Plant Signaling & Behavior, 14(8), 1625696. Available at: https://doi.org/10.1080/15592324.2019.1625696.
  • Cannon, S.B. et al. (2004) “The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana,” BMC Plant Biology, 4, 10. Available at: https://doi.org/10.1186/1471-2229-4-10.
  • Castro-Rodríguez, V. et al. (2016) “Deciphering the molecular basis of ammonium uptake and transport in maritime pine,” Plant Cell and Environment, 39(8), pp. 1669–1682. Available at: https://doi.org/10.1111/pce.12692.
  • Chantranupong, L., Wolfson, R.L. and Sabatini, D.M. (2015) “Nutrient-sensing mechanisms across evolution,” Cell, 161, pp. 67–83. Available at: https://doi.org/10.1016/j.cell.2015.02.041.
  • Chen, C. et al. (2018) “TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface,” Molecular Plant, 13, pp. 1194–1202. Available at: https://doi.org/10.1016/j.molp.2020.06.009.
  • Chen, P.Y. et al. (2021) “Arabidopsis glutamate receptor GLR3.7 is involved in abscisic acid response,” Plant Signaling & Behavior, 16(12), 1997513. Available at: https://doi.org/10.1080/15592324.2021.1997513.
  • Chen, Y. et al. (2022) “Development and verification of SSR markers from drought stress-responsive miRNAs in Dongxiang wild rice (Oryza rufipogon Griff.),” Functional & Integrative Genomics, 22, pp. 1153–1157. Available at: https://doi.org/10.1007/s10142-022-00891-3.
  • Cheng, Y. et al. (2018) “Glutamate receptor homolog 3.4 is involved in regulation of seed germination under salt stress in Arabidopsis,” Plant and Cell Physiology, 59, pp. 978–988. Available at: https://doi.org/10.1093/pcp/pcy034.
  • Chou, K.C. and Shen, H.B. (2010) “Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization,” PLoS ONE, 5(6), e11335. Available at: https://doi.org/10.1371/journal.pone.0011335.
  • Comadira, G. et al. (2015) “Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance,” Journal of Experimental Botany, 66 (12), pp. 3639–3655. Available at: https://doi.org/10.1093/jxb/erv276.
  • Couturier, J. et al. (2007) “The expanded family of ammonium transporters in the perennial poplar plant,” New Phytologist, 174 (1), pp. 137–150. Available at: https://doi.org/10.1111/j.1469-8137.2007.01992.x.
  • Cui, L. et al. (2019) “Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley,” BMC Genomics, 20, 750. Available at: https://doi.org/10.1186/s12864-019-6144-9.
  • Cunningham, F. et al. (2022) “Ensembl 2022,” Nucleic Acids Research, 50(D1), pp. D988–D995. Available at: https://doi.org/10.1093/nar/gkab1049.
  • Dai, X., Zhuang, Z. and Zhao, P.X. (2018) “psRNATarget: a plant small RNA target analysis server (2017 release),” Nucleic Acids Research, 46(W1), pp. W49–W54. Available at: https://doi.org/10.1093/nar/gky316.
  • Dang, T.H.Y., Ziemann, M. and Bhave, M. (2014) “Abiotic stress response in barley and the emergent roles of micrornas,” in K. Hasunuma (ed.) Physical properties, genetic factors and environmental impacts on growth. Hauppage, N.Y: Nova Science Publisher, pp. 165–192.
  • Dawson, I.K. et al. (2015) “Barley: a translational model for adaptation to climate change,” New Phytologist, 206, pp. 913–931. Available at: https://doi.org/10.1111/nph.13266.
  • Dechorgnat, J. et al. (2011) “From the soil to the seeds: the long journey of nitrate in plants,” Journal of Experimental Botany, 62, pp. 1349–1359. Available at: https://doi.org/10.1093/jxb/erq409.
  • Decouard, B. et al. (2022) “Genotypic variation of nitrogen use efficiency and amino acid metabolism in barley,” Frontiers in Plant Science, 12, 807798. Available at: https://doi.org/10.3389/fpls.2021.807798.
  • Duvaud, S. et al. (2021) “Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users,” Nucleic Acids Research, 49(W1), pp. W216–W227. Available at: https://doi.org/10.1093/nar/gkab225.
  • El-Araby, M.M., Nassar, A.H. and Shaaban, H.F. (2006) “A possible role of triosephosphate/phosphate translocator of chloroplast envelope membrane in the responses of tomato plants to salinity,” International Journal of Botany, 2, pp. 177–186. Available at: https://doi.org/10.3923/ijb.2006.177.186.
  • FAO (no date) Statistics. Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/statistics/en/ [Accessed: April 4, 2022].
  • Flores-Tornero, M. et al. (2017) “Overexpression of the triose phosphate translocator (TPT) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase mutants,” The Plant Journal, 89, pp. 1146–1158. Available at: https://doi.org/10.1111/tpj.13452.
  • Gaut, B.S. (2002) “Evolutionary dynamics of grass genomes,” New Phytologist, 154, pp. 15–28. Available at: https://doi.org/10.1046/j.1469-8137.2002.00352.x.
  • Gazzarrini, S. et al. (1999) “Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots,” The Plant Cell, 11(5), pp. 937–947. Available at: https://doi.org/10.1105/tpc.11.5.937.
  • Giannakis, E. et al. (2019) “Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations,” Environmental Sciences Europe, 31, 93. Available at: https://doi.org/10.1186/s12302-019-0275-0.
  • Giehl, R.F.H. et al. (2017) “A critical role of AMT2;1 in root-to-shoot translocation of ammonium in Arabidopsis,” Molecular Plant, 10, pp. 1449–1460. Available at: https://doi.org/10.1016/j.molp.2017.10.001.
  • Glass, A.D. et al. (2002) “The regulation of nitrate and ammonium transport systems in plants,” Journal of Experimental Botany, 53, pp. 855–864. Available at: https://doi.org/10.1093/jexbot/53.370.855.
  • Good, A.G., Shrawat, A.K. and Muench, D.G. (2004) “Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?,” Trends in Plant Science, 9(12), pp. 597–605. Available at: https://doi.org/10.1016/j.tplants.2004.10.008.
  • Goodstein, D.M. et al. (2012) “Phytozome: a comparative platform for green plant genomics,” Nucleic Acids Research, 40(D1), pp. D1178–D1186. Available at: https://doi.org/10.1093/nar/gkr944.
  • Grennan, A.K. (2006) “Genevestigator. Facilitating web-based gene-expression analysis,” Plant Physiology, 141(4), pp. 1164–1166. Available at: https://doi.org/10.1104/pp.104.900198.
  • Guether, M. et al. (2009) “A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi,” Plant Physiology, 150(1), pp. 73–83. Available at: https://doi.org/10.1104/pp.109.136390.
  • Habachi-Houimli, Y. et al. (2018) “Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley,” 3 Biotech, 8, 453. Available at: https://doi.org/10.1007/s13205-018-1478-6.
  • Hackenberg, M. et al. (2012) “A transgenic transcription factor (TaDREB3) in barley affects the expression of microRNAs and other small non-coding RNAs,” PLoS One, 7(8), e42030. Available at: https://doi.org/10.1371/journal.pone.0042030.
  • Han, M. et al. (2016) “Identification of nitrogen use efficiency genes in barley: searching for QTLs controlling complex physiological traits,” Frontiers in Plant Science, 7, 1587. Available at: https://doi.org/10.3389/fpls.2016.01587.
  • Hao, D.-L. et al. (2020a) “Function and regulation of ammonium transporters in plants,” International Journal of Molecular Sciences, 21, 3557. Available at: https://doi.org/10.3390/ijms21103557.
  • Hao, D.L. et al. (2020b) “Functional and regulatory characterization of three AMTs in maize roots,” Frontiers in Plant Science, 11, 884. Available at: https://doi.org/10.3389/fpls.2020.00884.
  • Häusler, R.E. et al. (2014) “How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities,” Molecular Plant, 7, pp. 1121–1137. Available at: https://doi.org/10.1093/mp/ssu064.
  • Hruz, T. et al. (2008) “Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes,” Advances in Bioinformatics, 2008, 420747. Available at: https://doi.org/10.1155/2008/420747.
  • Hu, B. et al. (2015) “GSDS 2.0: an upgraded gene feature visualization server,” Bioinformatics, 31(8), pp. 1296–1297. Available at: https://doi.org/10.1093/bioinformatics/btu817.
  • Huang, L. et al. (2022) “Genome-wide identification and expression analysis of AMT gene family in apple (Malus domestica Borkh.),” Horticulturae, 8(5), 457. Available at: https://doi.org/10.3390/horticulturae8050457.
  • Hurst, L.D. (2002) “The Ka/Ks ratio: diagnosing the form of sequence evolution,” Trends in Genetics, 18(9), 486. Available at: https://doi.org/10.1016/s0168-9525(02)02722-1.
  • Husted, S. and Schjoerring, J.K. (1996) “Ammonia flux between oilseed rape plants and the atmosphere in response to changes in leaf temperature, light intensity, and air humidity (interactions with leaf conductance and apoplastic NH 4+ and H+ concentrations),” Plant Physiology, 112(1), pp. 67–74. Available at: https://doi.org/10.1104/pp.112.1.67.
  • Jayakodi, M. et al. (2020) “The barley pan-genome reveals the hidden legacy of mutation breeding,” Nature, 588(7837) pp. 284–289. Available at: https://doi.org/10.1038/s41586-020-2947-8.
  • Jones, P. et al. (2014) “InterProScan 5: genome-scale protein function classification,” Bioinformatics, 30(9), pp. 1236–1240. Available at: https://doi.org/10.1093/bioinformatics/btu031.
  • Ju, L. et al. (2019) “Structural organization and functional divergence of high isoelectric point α-amylase genes in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.),” BMC Genetics, 20, 25. Available at: https://doi.org/10.1186/s12863-019-0732-1.
  • Kantar, M., Unver, T. and Budak, H. (2010) “Regulation of barley miRNAs upon dehydration stress correlated with target gene expression,” Functional and Integrative Genomics, 10, pp. 493–507. Available at: https://doi.org/10.1007/s10142-010-0181-4.
  • Kanter, D.R. et al. (2020) “Nitrogen pollution policy beyond the farm,” Nature Food, 1, pp. 27–32. Available at: https://doi.org/10.1038/s43016-019-0001-5.
  • Koegel, S. et al. (2013) “The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi,” New Phytologist, 198(3), pp. 853–865. Available at: https://doi.org/10.1111/nph.12199.
  • Krogh, A. et al. (2001) “Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes,” Journal of Moleular Biology, 305(3), pp. 567–580. Available at: https://doi.org/10.1006/jmbi.2000.4315.
  • Kronzucker, H.J., Siddiqi, M.Y. and Glass, A.D. (1996) “Kinetics of NH 4+ influx in spruce,” Plant Physiology, 110(3), pp. 773–779. Available at: https://doi.org/10.1104/pp.110.3.773.
  • Kumar, R. (2014) “Role of microRNAs in biotic and abiotic stress responses in crop plants,” Applied Biochemistry and Biotechnology, 174, pp. 93–115. Available at: https://doi.org/10.1007/s12010-014-0914-2.
  • Lam, H.-M. et al. (1998) “Glutamate-receptor genes in plants,” Nature, 396, pp. 125–126. Available at: https://doi.org/10.1038/24066.
  • Lescot, M. et al. (2002) “PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences,” Nucleic Acids Research, 30(1), pp. 325–327. Available at: https://doi.org/10.1093/nar/30.1.325.
  • Letunic, I. and Bork, P. (2021) “Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation,” Nucleic Acids Research, 49(W1), pp. W293–W296. Available at: https://doi.org/10.1093/nar/gkab301.
  • Li, B.-Z. et al. (2009) “Molecular basis and regulation of ammonium transporter in rice,” Rice Science, 16, pp. 314–322. Available at: https://doi.org/10.1016/S1672-6308(08)60096-7.
  • Li, C. et al. (2016) “The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges,” Journal of Genetics and Genomics, 43, pp. 639–649. Available at: https://doi.org/10.1016/j.jgg.2016.11.001.
  • Li, H. et al. (2015) “Molecular cloning and identification of an ammonium transporter gene from pear,” Plant Cell, Tissue and Organ Culture, 120, pp. 441–451. Available at: https://doi.org/10.1007/s11240-014-0611-4.
  • Li, H. et al. (2016a) “Gene characterization and transcription analysis of two new ammonium transporters in pear rootstock (Pyrus betulaefolia),” Journal of Plant Research, 129, pp. 737–748. Available at: https://doi.org/10.1007/s10265-016-0799-y.
  • Li, H. et al. (2016b) “Two AMT2-type ammonium transporters from Pyrus betulaefolia demonstrate distinct expression characteristics,” Plant Molecular Biology Reporter, 34, pp. 707–719. Available at: https://doi.org/10.1007/s11105-015-0957-8.
  • Li, S.-M., Li, B.-Z. and Shi, W.-M. (2012) “Expression patterns of nine ammonium transporters in rice in response to N status,” Pedosphere, 22, pp. 860–869. Available at: https://doi.org/10.1016/S1002-0160(12)60072-1.
  • Li, T. et al. (2017) “Wheat ammonium transporter (AMT) gene family: Diversity and possible role in host–pathogen interaction with stem rust,” Frontiers in Plant Science, 8, 1637. Available at: https://doi.org/10.3389/fpls.2017.01637.
  • Lima, J.E. et al. (2010) “Ammonium triggers lateral root branching in Arabidopsis in an ammonium transporter 1;3-dependent manner,” The Plant Cell, 22, pp. 3621–3633. Available at: https://doi.org/10.1105/tpc.110.076216.
  • Liu, L.-H. et al. (2018) “Coding-sequence identification and transcriptional profiling of nine AMTs and four NRTs from tobacco revealed their differential regulation by developmental stages, nitrogen nutrition, and photoperiod,” Frontiers in Plant Science, 9, 210. Available at: https://doi.org/10.3389/fpls.2018.00210.
  • Loque, D. et al. (2006) “Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots”. The Plant Journal, 48, pp. 522–534. Available at: https://doi.org/10.1111/j.1365-313X.2006.02887.x.
  • Loqué, D. et al. (2009) “Pore mutations in ammonium transporter AMT1 with increased electrogenic ammonium transport activity,” Journal of Biological Chemistry, 284, pp. 24988–24995. Available at: https://doi.org/10.1074/jbc.M109.020842.
  • Loqué, D. and Wirén von, N. (2004) “Regulatory levels for the transport of ammonium in plant roots,” Journal of Experimental Botany, 55, pp. 1293–1305. Available at: https://doi.org/10.1093/jxb/erh147.
  • Ludewig, U. et al. (2003) “Homo-and hetero-oligomerization of ammonium transporter-1 NH4+ uniporters,” Journal of Biological Chemistry, 278, pp. 45603–45610. Available at: https://doi.org/10.1074/jbc.M307424200.
  • Ludewig, U., Neuhäuser, B. and Dynowski, M. (2007) “Molecular mechanisms of ammonium transport and accumulation in plants,” FEBS Letters, 581, pp. 2301–2308. Available at: https://doi.org/10.1016/j.febslet.2007.03.034.
  • Ludewig, U., Wirén von, N. and Frommer, W.B. (2002) “Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1; 1,” Journal of Biological Chemistry, 277, pp. 13548–13555. Available at: https://doi.org/10.1074/jbc.M200739200.
  • Lv, X. et al. (2021) “Low-nitrogen stress stimulates lateral root initiation and nitrogen assimilation in wheat: Roles of phytohormone signaling,” Journal of Plant Growth Regulation, 40, pp. 436–450. Available at: https://doi.org/10.1007/s00344-020-10112-5.
  • Lynch, M. and Conery, J.S. (2000) “The evolutionary fate and consequences of duplicate genes,” Science, 290, pp. 1151–1155. Available at: https://doi.org/10.1126/science.290.5494.1151.
  • Masumoto, C. et al. (2010) “Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation,” Proceedings of the National Academy of Sciences, 107, pp. 5226–5231. Available at: https://doi.org/10.1073/pnas.0913127107.
  • McDonald, T.R., Dietrich, F.S. and Lutzoni, F. (2012) “Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification,” Molecular Biology and Evolution, 29, pp. 51–60. Available at: https://doi.org/10.1093/molbev/msr123.
  • McDonald, T.R. and Ward, J.M. (2016) “Evolution of electrogenic ammonium transporters (AMTs),” Frontiers in Plant Science, 7, 352. Available at: https://doi.org/10.3389/fpls.2016.00352.
  • Mückstein, U. et al. (2006) “Thermodynamics of RNA–RNA binding,” Bioinformatics, 22, pp. 1177–1182. Available at: https://doi.org/10.1093/bioinformatics/btl024.
  • Muñoz-Amatriaín, M. et al. (2014) “Barley genetic variation: implications for crop improvement,” Briefings in Functional Genomics, 13, pp. 341–350. Available at: https://doi.org/10.1093/bfgp/elu006.
  • Nandi, S. et al. (2005) “Comparison of theoretical proteomes: Identification of COGs with conserved and variable pI within the multimodal pI distribution,” BMC Genomics, 6, 116. Available at: https://doi.org/10.1186/1471-2164-6-116.
  • Neuhauser, B., Dynowski, M. and Ludewig, U. (2009) “Channel-like NH 3 flux by ammonium transporter AtAMT2,” FEBS Letters, 583, pp. 2833–2838. Available at: https://doi.org/10.1016/j.febs-let.2009.07.039.
  • Nevo, E. (2013) Evolution of wild barley and barley improvement. In: Zhang, G., Li, C., Liu, X. (ed.) Advance in barley sciences. Dordrecht: Springer, pp. 1–23.
  • Ninnemann, O., Jauniaux, J. and Frommer, W. (1994) “Identification of a high affinity NH 4+ transporter from plants,” The EMBO Journal, 13, pp. 3464–3471. Available at: https://doi.org/10.1002/j.1460-2075.1994.tb06652.x.
  • Ortiz-Ramirez, C. et al. (2011) “PvAMT1; 1, a highly selective ammonium transporter that functions as H +/NH 4+ symporter,” Journal of Biological Chemistry, 286, pp. 31113–31122. Available at: https://doi.org/10.1074/jbc.M111.261693.
  • Owen, A. and Jones, D. (2001) “Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition,” Soil Biology and Biochemistry, 33, pp. 651–657. Available at: https://doi.org/10.1016/S0038-0717(00)00209-1.
  • Pantoja, O. (2012) “High affinity ammonium transporters: molecular mechanism of action,” Frontiers in Plant Science, 3, 34. Available at: https://doi.org/10.3389/fpls.2012.00034.
  • Pearson, J., Finnemann, J. and Schjoerring, J. (2002) “Regulation of the high-affinity ammonium transporter (BnAMT1; 2) in the leaves of Brassica napus by nitrogen status,” Plant Molecular Biology, 49, pp. 483–490. Available at: https://doi.org/10.1023/A:1015549115471.
  • Peng, B. et al. (2014) “OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice,” Nature Communications, 5, 4847. Available at: https://doi.org/10.1038/ncomms5847.
  • Porto, M.S. et al. (2014) “Plant promoters: an approach of structure and function,” Molecular Biotechnology, 56, pp. 38–49. Available at: https://doi.org/10.1007/s12033-013-9713-1.
  • Ranathunge, K. et al. (2014) “AMT1; 1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions,” Journal of Experimental Botany, 65, pp. 965–979. Available at: https://doi.org/10.1093/jxb/ert458.
  • Rehman, S. et al. (2020) “Genome wide identification and comparative analysis of the serpin gene family in brachypodium and barley,” Plants, 9(11), 1439. Available at: https://doi.org/10.3390/plants9111439.
  • Rombauts, S. et al. (1999) “PlantCARE, a plant cis-acting regulatory element database,” Nucleic Acids Research, 27, pp. 295–296. Available at: https://doi.org/10.1093/nar/27.1.295.
  • Ryan, J. and Sommer, R. (2012) “Soil fertility and crop nutrition research at an international center in the Mediterranean region: achievements and future perspective,” Archives of Agronomy and Soil Science, 58, pp. S41–S54. Available at: https://doi.org/10.1080/03650340.2012.693601.
  • Salvemini, F. et al. (2001) “Functional characterization of an ammonium transporter gene from Lotus japonicus,” Gene, 270, pp. 237–243. Available at: https://doi.org/10.1016/S0378-1119(01)00470-X.
  • Santos, T.B. et al. (2017) “Genome-wide identification, classification and transcriptional analysis of nitrate and ammonium transporters in Coffea,” Genetics and Molecular Biology, 40, pp. 346–359. Available at: https://doi.org/10.1590/1678-4685-gmb-2016-0041.
  • Søgaard, R. et al. (2009) “Ammonium ion transport by the AMT/Rh homolog TaAMT1; 1 is stimulated by acidic pH,” Pflügers Archiv European Journal of Physiology, 458, pp. 733–743. Available at: https://doi.org/10.1007/s00424-009-0665-z.
  • Sohlenkamp, C. et al. (2000) “Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants,” FEBS Letters, 467(2–3), pp. 273–278. Available at: https://doi.org/10.1016/s0014-5793(00)01153-4.
  • Sohlenkamp, C. et al. (2002) “Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane,” Plant Physiology, 130, pp. 1788–1796. Available at: https://doi.org/10.1104/pp.008599.
  • Song, S. et al. (2017) “Cloning and characterization of the ammonium transporter genes BaAMT1; 1 and BaAMT1; 3 from Chinese kale,” Horticulture, Environment, and Biotechnology, 58, pp. 178–186. Available at: https://doi.org/10.1007/s13580-017-0168-3.
  • Sonoda, Y. et al. (2003a) “Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice,” Plant Cell Physiology, 44, pp. 726–734. Available at: https://doi.org/10.1093/pcp/pcg083.
  • Sonoda, Y. et al. (2003b) “Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice,” Plant and Cell Physiology, 44, pp. 1396–1402. Available at: https://doi.org/10.1093/pcp/pcg169.
  • Sun, Y.C. et al. (2019) “Molecular identification and functional characterization of GhAMT1.3 in ammonium transport with a high affinity from cotton (Gossypium hirsutum L.),” Physiologia Plantarum, 167, pp. 217–231. Available at: https://doi.org/10.1111/ppl.12882.
  • Sunkar, R., Li, Y.-F. and Jagadeeswaran, G. (2012) “Functions of microRNAs in plant stress responses,” Trends in Plant Science, 17, pp. 196–203. Available at: https://doi.org/10.1016/j.tplants.2012.01.010.
  • Sutton, M.A. et al. (2011) The European nitrogen assessment: Sources, effects and policy perspectives. Cambridge: Cambridge University Press. Available at: https://doi.org/10.1017/CBO9780511976988.
  • Szklarczyk, D. et al. (2021) “The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets,” Nucleic Acids Research, 49(D1), pp. D605–D612. Available at: https://doi.org/10.1093/nar/gkaa1074.
  • TAIR (2022) The Arabidopsis Information Resource. Available at: http://arabidopsis.org (Accessed: April 10, 2022).
  • Tamura, K., Stecher, G. and Kumar, S. (2021) “MEGA11: molecular evolutionary genetics analysis version 11,” Molecular Biology and Evolution, 38, pp. 3022–3027. Available at: https://doi.org/10.1093/molbev/msab120.
  • Tanaka, R. and Nakano, H. (2019) “Barley yield response to nitrogen application under different weather conditions,” Scientific Reports, 9, 8477. Available at: https://doi.org/10.1038/s41598-019-44876-y.
  • Tang, M. et al. (2020) “Characterization and expression of ammonium transporter in peach (Prunus persica) and regulation analysis in response to external ammonium supply,” Phyton (Buenos Aires), 89, pp. 925–941. Available at: https://doi.org/10.32604/phyton.2020.011184.
  • Tokmakov, A.A., Kurotani, A. and Sato, K.I. (2021) “Protein pI and intracellular localization,” Frontiers in Molecular Biosciences, 8, 775736. Available at: https://doi.org/10.3389/fmolb.2021.775736.
  • Vries de, W. (2021) “Impacts of nitrogen emissions on ecosystems and human health: A mini review,” Current Opinion in Environmental Science & Health, 21, 100249. Available at: https://doi.org/10.1016/j.coesh.2021.100249.
  • Wang, M.Y. et al. (1994) “Ammonium uptake by rice roots (III. Electrophysiology),” Plant Physiology, 104, pp. 899–906. Available at: https://doi.org/10.1104/pp.104.3.899.
  • Wang, Y. et al. (2012) “MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity,” Nucleic Acids Research, 40, e49, pp. 1–14. Available at: https://doi.org/10.1093/nar/gkr1293.
  • Wang, Y. et al. (2022) “Genome-wide identification, characterization, and expression analysis of the ammonium transporter gene family in tea plants (Camellia sinensis L.),” Physiologia Plantarum, 174, e13646. Available at: https://doi.org/10.1111/ppl.13646.
  • Wirén von, N. et al. (2000a) “The molecular physiology of ammonium uptake and retrieval,” Current Opinion in Plant Biology, 3(3), pp. 254–261. Available at: https://doi.org/10.1016/S1369-5266(00)80074-6.
  • Wirén von, N. et al. (2000b) “Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato,” The Plant Journal, 21, pp. 167–175. Available at: https://doi.org/10.1046/j.1365-313x.2000.00665.x.
  • Wirén von, N. and Merrick, M. (2004) “Regulation and function of ammonium carriers in bacteria, fungi, and plants,” in E. Boles, R. Krämer (ed.) Molecular mechanisms controlling transmembrane transport. Springer, pp. 95–120.
  • Wittgenstein von, N.J. et al. (2014) “Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants,” BMC Evolutionary Biology, 14, 11. Available at: https://doi.org/10.1186/1471-2148-14-11.
  • Wolfe, K.H., Sharp, P.M. and Li, W.-H. (1989) “Rates of synonymous substitution in plant nuclear genes,” Journal of Molecular Evolution, 29, pp. 208–211. Available at: https://doi.org/10.1007/BF02100204.
  • Wood, C.C. et al. (2006) “Mechanisms of ammonium transport, accumulation, and retention in ooyctes and yeast cells expressing Arabidopsis AtAMT1; 1”. FEBS Letters, 580, pp. 3931–3936. Available at: https://doi.org/10.1016/j.febslet.2006.06.026.
  • Wu, L. et al. (2018) “Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley,” BMC Genomics, 19, pp. 1–14. Available at: https://doi.org/10.1186/s12864-018-4953-x.
  • Wu, X. et al. (2015) “Sequence and expression analysis of the AMT gene family in poplar,” Frontiers in Plant Science, 6, 337. Available at: https://doi.org/10.3389/fpls.2015.00337.
  • Wu, X.-T. et al. (2022) “Genome-wide identification and transcriptional expression profiles of PP2C in the barley (Hordeum vulgare L.) pan-genome,” Genes, 13(5), 834. Available at: https://doi.org/10.3390/genes13050834.
  • Wu, Z. et al. (2021) “Genome-wide identification and transcriptional analysis of ammonium transporters in Saccharum,” Genomics, 113, pp. 1671–1680. Available at: https://doi.org/10.1016/j.ygeno.2021.04.001.
  • Xia, E. et al. (2020) “The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation,” Molecular Plant, 13, pp. 1013–1026. Available at: https://doi.org/10.1016/j.molp.2020.04.010.
  • Xia, Y. et al. (2022) “Genome-wide identification and expression analysis of ammonium transporter 1 (AMT1) gene family in cassava (Manihot esculenta Crantz) and functional analysis of MeAMT1; 1 in transgenic Arabidopsis,” 3 Biotech, 12, pp. 1–13. Available at: https://doi.org/10.1007/s13205-021-03070-6.
  • Xu, Y. et al. (2022) “Genome-wide analysis of AMT gene family and its response to mycorrhizal symbiosis in maize,” Journal of Plant Growth Regulation, 42, pp. 1134–1143. Available at: https://doi.org/10.1007/s00344-022-10618-0.
  • Yang, S. et al. (2015) “The rice OsAMT1; 1 is a proton-independent feedback regulated ammonium transporter,” Plant Cell Reports, 34, pp. 321–330. Available at: https://doi.org/10.1007/s00299-014-1709-1.
  • Yuan, L. et al. (2007) “The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters,” Plant Cell, 19, pp. 2636–2652. Available at: https://doi.org/10.1105/tpc.107.052134.
  • Zhang, C.-j. et al. (2020) “Advances on the molecular action mechanisms of plant miRNA,” Biotechnology Bulletin, 36, pp. 1–14. Available at: https://doi.org/10.13560/j.cnki.biotech.bull.1985.2020-0262.
  • Zhang, F. et al. (2018) “Molecular cloning and expression analysis of ammonium transporters in tea plants (Camellia sinensis (L.) O. Kuntze) under different nitrogen treatments,” Gene, 658, pp. 136–145. Available at: https://doi.org/10.1016/j.gene.2018.03.024.
  • Zhang, S. et al. (2022) “Research progress about microRNAs involved in plant secondary metabolism,” International Journal of Biological Macromolecules, 216, pp. 820–829. Available at: https://doi.org/10.1016/j.ijbiomac.2022.07.224.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6c6629c-fd68-44c4-9cc8-48c6a80fa72d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.