PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of hot-mix asphalt containing Portland cement treated blast furnace slag

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Iron production’s waste materials include significant quantities of blast furnace slag (BFS) which could potentially be used as a substitute for natural aggregates in hot mix asphalt (HMA) used in highway projects. Although many of properties of slag are interesting, its porosity and absorption rate would lead to greater consumption of asphalt. For this study, a Portland cement (PC) paste was used to reduce the porosity of a BFS. This PC treated BFS (called BFS-C) was then used in an HMA to replace the coarse fraction of a natural aggregate. Marshall, Indirect Tensile Strength (ITS), resilient modulus and Cantabro tests were then carried out on different HMA mixtures that included BFS-C. Using BFS-C, HMA’s resistance under monotonic loading, stiffness under cyclic loading, and resistance to moisture damage increased remarkably. In addition, the Cantabro abrasion resistance of BFS-C improved was better than that of the HMA mixture produced with untreated BFS.
Rocznik
Strony
193--207
Opis fizyczny
Bibliogr. 51 poz., il., tab.
Twórcy
  • Universidad Distrital Francisco José de Caldas, Faculty of Environment and Natural Resources, Bogotá, Colombia
  • Universidad Militar Nueva Granada, Faculty of Engineering, Bogotá, Colombia
  • Universidad Piloto de Colombia, Faculty of Engineering, Bogotá, Colombia
Bibliografia
  • 1. S. Akbarnejad, L. J. M. Houben, A. A. A. Molenaar, “Application of aging methods to evaluate the long-term performance of road bases containing blast furnace slag materials”, Road Materials and Pavement Design 15(3): 488-506, 2014. https://doi.org/10.1080/14680629.2014.907196.
  • 2. H. A. Rondón, J. C. Ruge, M. Farias, “Behavior of a hot mix asphalt containing blast furnace slag as aggregate: evaluation by mass and volume substitution”, Journal of Materials in Civil Engineering 31(2), 2019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002574.
  • 3. H. A. Rondón, J. C. Ruge, D. Patiño, H. Vacca, F. A. Reyes, M. Farias, “Use of blast furnace slag as a substitute for the fine fraction of aggregates in an asphalt mixture”, Journal of Materials in Civil Engineering 30(10), 2018. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0002409.
  • 4. A. Jamshidi, K. Kurumisawa, T. Nawa, M. Jize, G. White, “Performance of pavements incorporating industrial by products: a state-of-the-art study”, Journal of Cleaner Production 164: 367-388, 2017. https://doi: 10.1016/j.jclepro.2017.06.223.
  • 5. Z. Zarei, M. B. Reza, “Application of iron slag at different pavement layers”, Journal of Environmental Treatment Techniques 3(3): 158-162, 2015.
  • 6. FHWA (Federal Highway Administration Research and Technology), “Coordinating, developing, and delivering highway transportation innovations: User guidelines for waste and byproduct materials in pavement construction”, Rep. Publication Number: FHWA-RD-97-148. Washington, DC: FHWA, 2008.
  • 7. INVIAS (Instituto Nacional de Vías), “Especificaciones generales de construcción de carreteras [General specifications for road and highways construction]”, Bogotá, Colombia: INVIAS, 2013.
  • 8. K. A. Vaughan, “An investigation of cement coating for aggregates in bituminous material”, Ph. D. thesis, Liverpool John Moores University, 1999. 10.24377/LJMU.t.00005989.
  • 9. D. Lesueur, D. Little, “Effect of hydrated lime on rheology, fracture, and aging of bitumen”, Transportation Research Record 1661: 93-105, 1999. https://doi.org/10.3141/1661-14.
  • 10. G. D. Airey, A. C. Collop, S. E. Zoorob, R. C. Elliott, “The influence of aggregate, filler and bitumen on asphalt mixture moisture damage”, Construction and Building Materials 22(9): 2015-2024, 2008. https://doi.org/10.1016/j.conbuildmat.2007.07.009.
  • 11. V. Antunes, A. C. Freire, L. Quaresma, R. Micaelo, “Effect of the chemical composition of fillers in the filler–bitumen interaction”, Construction and Building Materials 104: 85-91, 2016. https://doi.org/10.1016/j.conbuildmat.2015.12.042.
  • 12. D. Movilla-Quesada, A. C. Raposeiras, D. Castro-Fresno, D. Peña-Mansilla, “Experimental study on stiffness development of asphalt mixture containing cement and Ca(OH)2 as contribution filler”, Materials & Design 74: 157-63, 2015. https://doi.org/10.1016/j.matdes.2015.02.026.
  • 13. S. Du, “Performance characteristic of cold recycled mixture with asphalt emulsion and chemical additives”, Advances in Materials Science and Engineering 2015: 1-10, 2015. http://dx.doi.org/10.1155/2015/271596.
  • 14. D. Lesueur, A. Teixeira, M. M. Lázaro, D. Andaluz, A. Ruiz, “A simple test method in order to assess the effect of mineral fillers on bitumen ageing”, Construction and Building Materials 117: 182-189, 2016. http://dx.doi.org/10.1016/j.conbuildmat.2016.05.003.
  • 15. I. Ishai, S. Nesichi, “Laboratory evaluation of moisture damage to bituminous paving mixtures by long-term hot immersion”, Transportation Research Record 1171: 12-17, 1988. http://worldcat.org/isbn/0309047102.
  • 16. A. Gundla, J. Medina, P. Gudipudi, R. Stevens, R. Salim, W. Zeiada, B. Underwood, “Investigation of aging in hydrated lime and portland cement modified asphalt concrete at multiple length scales”, Journal of Materials in Civil Engineering 28(5), 2016. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001501.
  • 17. G. G. Al-Khateeb, N. M. Al-Akhras, “Properties of Portland cement-modified asphalt binder using Superpave tests”, Construction and Building Materials 25(2): 926-932, 2011. https://doi.org/10.1016/j.conbuildmat.2010.06.091.
  • 18. T. Saadoon, B. Gómez-Meijide, A. Garcia, “Prediction of water evaporation and stability of cold asphalt mixtures containing different types of cement”, Construction and Building Materials 186: 751-761, 2018. https://doi.org/10.1016/j.conbuildmat.2018.07.218.
  • 19. Y. Niazi, M. Jalili, “Effect of Portland cement and lime additives on properties of cold in-place recycled mixtures with asphalt emulsion”, Construction and Building Materials 23: 1338-43, 2009. https://doi.org/10.1016/j.conbuildmat.2008.07.020
  • 20. S. Likitlersuang, T. Chompoorat, “Laboratory investigation of the performances of cement and fly ash modified asphalt concrete mixtures”, Internation Journal of Pavement Research and Technology 9: 337-344, 2016. http://dx.doi.org/10.1016/j.ijprt.2016.08.002.
  • 21. S. Oruc, F. Celik, M. V. Akpinar, “Effect of cement on emulsified asphalt mixtures”, Journal of Materials Engineering and Performance 16(5): 578-583, 2007. https://doi.org/10.1007/s11665-007-9095-2.
  • 22. L. Fang, Q. Yuan, D. Deng, Y. Pan, Y. Wang, “Effect of mix parameters on the dynamic mechanical properties of cement asphalt mortar”, Journal of Materials in Civil Engineering 29(8), 2017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001913.
  • 23. J. Ouyang, J. Zhao, Y. Tan, “Modeling mechanical properties of cement asphalt emulsion mortar with different asphalt to cement ratios and temperatures”, Journal of Materials in Civil Engineering 30(10), 2018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002480.
  • 24. X. Kong, Y. Liu, Y. Zhang, Z. Zhang, P. Yan, Y. Bai, “Influences of temperature on mechanical properties of cement asphalt mortars”, Materials and Structures 47(1-2): 285-292, 2014. https://doi.org/10.1617/s11527-013-0060-2.
  • 25. N. Pouliot, J. Marchand, M. Pigeon, “Hydration mechanisms, microstructure, and mechanical properties of mortars prepared with mixed binder cement slurry-asphaltemulsion”, Journal of Materials in Civil Engineering 15(1), 2003. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(54).
  • 26. G. D. Airey, A. C. Collop, N. H. Thom, “Mechanical performance of asphalt mixtures incorporating slag and glass secondary aggregates”, In Proc., 8th Conf. Asphalt Pavements for Southern Africa (CAPSA’04). Pretoria, South Africa: CSIR Transportek, Asphalt Academy, 2004.
  • 27. L. Ali, A. Fiaz, “Use of fly ash along with blast furnace slag as partial replacement of fine aggregate and mineral filler in asphalt mix, at high temperature”, In GeoHunan International Conference 2009, Changsha, Hunan, China: American Society of Civil Engineering, 2009. https://doi.org/10.1061/41045(352)18.
  • 28. H. A. Rondón, S. Chaves, D. Escobar, “Evaluation of a warm mix asphalt manufactured with blast furnace slag”, Modern Applied Science 12(12): 28-40, 2018. doi:10.5539/mas.v12n12p28.
  • 29. S. Du, “Mechanical properties and reaction characteristics of asphalt emulsion mixture with activated ground granulated blast-furnace slag”, Construction and Building Materials 187: 439-447, 2018. https://doi.org/10.1016/j.conbuildmat.2018.07.233.
  • 30. AASHTO. 2000. Standard method of test for specific gravity and absorption of fine aggregate. AASHTO T84. Washington, DC: AASHTO.
  • 31. AASHTO. 1991. Standard method of test for specific gravity and absorption of coarse aggregate. AASHTO T85. Washington, DC: AASHTO.
  • 32. ASTM. 2001. Standard test method for determining the percentage of fractured particles in coarse aggregate. ASTM D5821. West Conshohocken, PA: ASTM.
  • 33. NLT (Norma Laboratorio de Transporte). 1991. Standard method for the determination of the flakiness index of the aggregate. NLT 354. Madrid, Spain: Centro de Estudios y Experimentación de Obras Públicas.
  • 34. ASTM. 2000. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
  • 35. DNER (Departamento Nacional de Estradas de Rodagem). 1998. Avaliação da resistência mecânica pelo método dos 10% de finos [Evaluation of mechanical resistance to coarse aggregate using 10% method]. DNER-ME 096. Rio de Janeiro, Brazil: Departamento Nacional de Infraestrutura de Transporte.
  • 36. AASHTO. 2012. Standard method of test for resistance of coarse aggregate to degradation by abrasion in the Micro-Deval apparatus. AASHTO T327. Washington, DC: AASHTO.
  • 37. AASHTO. 1991a. Standard method of test for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. AASHTO T96. Washington, DC: AASHTO.
  • 38. AASHTO. 2004. Standard method of test for specific gravity of semi-solid asphalt materials. AASHTO T228. Washington, DC: AASHTO.
  • 39. ASTM. 2013. Standard test method for penetration of bituminous materials. ASTM D5/D5M. West Conshohocken, PA: ASTM.
  • 40. NLT (Norma Laboratorio de Transporte). 1988. Método para determinar la variación de la consistencia del betún asfáltico con los cambios de temperatura (susceptibilidad) [Method to determine the variation in the consistency of asphalt bitumen with temperature changes (susceptibility)]. NLT 181. Madrid, Spain: Normas NLT.
  • 41. ASTM. 2015. Standard test method for viscosity determination of asphalt at elevated temperatures using a Rotational Viscometer. ASTM D4402/D4402M. West Conshohocken, PA: ASTM.
  • 42. ASTM. 2006. Standard test method for softening point of bitumen (Ring-and-Ball apparatus). ASTM D36. West Conshohocken, PA: ASTM.
  • 43. ASTM. 1999. Standard test method for ductility of bituminous materials. ASTM D113. West Conshohocken, PA: ASTM.
  • 44. ASTM. 2001a. Standard test method for flash and fire points by Cleveland Open Cup. ASTM D92. West Conshohocken, PA: ASTM.
  • 45. ASTM. 2012. Standard test method for effect of heat and air on a moving film of asphalt (Rolling Thin-Film Oven Test). ASTM D2872-12e1. West Conshohocken, PA: ASTM.
  • 46. AASHTO. 2015. Standard method of test for resistance to plastic flow of bituminous mixtures using Marshall apparatus. AASHTO T245. Washington, DC: AASHTO.
  • 47. AASHTO. 2014. Standard method of test for percent air voids in compacted dense and open asphalt mixtures. AASHTO T269. Washington, DC: AASHTO.
  • 48. AASHTO. 2014a. Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. AASHTO T283. Washington, DC: AASHTO.
  • 49. BSI (British Standards Institution). 2005. Bituminous mixtures test methods for hot mix asphalt. Part 26: Stiffness. BS EN 12697-26. London: BSI.
  • 50. B. C. Cox, B. T. Smith, I. L. Howard, R. S. James, “State of knowledge for Cantabro testing of dense graded asphalt”, Journal of Materials in Civil Engineering 29(10): 04017174, 2017. doi.org/10.1061/(ASCE)MT.1943-5533.0002020.
  • 51. NLT (Norma Laboratorio de Transporte). 1986. Caracterización de las mezclas bituminosas abiertas por medio del ensayo Cántabro de pérdida por desgaste [Characterization of open or porous aspahlt mixtures using abrasion Cantabro test]. NLT 352. Madrid, Spain: Normas NLT.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6c25532-22d5-4498-99cf-44deacea479c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.