PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of coagulant/flocculant particle size and mass on the kinetics of coagulation process. Computer simulation. The applicability of the Smoluchowski–Müller theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chemical coagulation is a crucial process in water treatment, hence the need for research on its optimization and increasing efficiency. This study explores coagulant/flocculant particle size, mass, and density’s impact on coagulation kinetics. The study employed a computer program that simulates the perikinetic coagulation processes. The simulation’s reliability was confirmed based on the classical Smoluchowski–Müller equations. Destabilization kinetics of the simulated sol revealed linear relation-ships. The coagulation rate adhered to both first-order (R2 = 0.97) and second-order kinetics (R2 = 0.98). Coagulant/flocculant particle size, mass, and density significantly influenced coagulation kinetics and efficiency. A tenfold increase in coagulant radius led to a fourfold rate increase.
Rocznik
Strony
69--84
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Department of Chemistry, Plac Łodzki 4, 10-957 Olsztyn, Poland,
Bibliografia
  • [1] CUIAB H., HUANG X., YU Z., CHENAB P., CAO X., Application progress of enhanced coagulation in water treatment, RSC Adv., 2020, 10, 20231–20244. DOI: 10.1039/D0RA02979C.
  • [2] IWUOZOR K.O., Prospects and challenges of using coagulation-flocculation method in the treatment of effluents, Adv. J. Chem. A, 2019, 2 (2), 105–127. DOI: 10.29088/SAMI/AJCA.2019.2.105127.
  • [3] TEH C.Y., BUDIMAN P.M., SHAK K.P.Y., WU T.Y., Recent advancement of coagulation-flocculation and its application in wastewater treatment, Ind. Eng. Chem. Res., 2016, 55 (16), 4363–4389. DOI: 10.1021/acs. iecr.5b04703.
  • [4] KOOIJMAN G., KREUK M.K., HOUTMAN C., LIER J.B., Perspectives of coagulation/flocculation for the removal of pharmaceuticals from domestic wastewater. A critical view at experimental procedures, J. Water Proc. Eng., 2020, 34, 101161. DOI: 10.1016/j.jwpe.2020.101161.
  • [5] BAZRAFSHAN E., ALIPOUR M.R., MAHVI A.H., Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes, Desal. Water Treat., 2016, 57 (20), 9203–9215. DOI: 10.1080/19443994.2015.1027960.
  • [6] MENSAH-AKUTTEH H., BUAMAH R., WIAFE S., NYARKO K.B., Optimizing coagulation–flocculation processes with aluminium coagulation using response surface methods, Appl. Water Sci., 2022, 12 (8), 188. DOI: 10.1007/s13201-022-01708-1.
  • [7] GRANT S.B., KIM J.H., POOR C., Kinetic theories for the coagulation and sedimentation of particles, J. Colloid Int. Sci., 2001, 238, 238–250. DOI: 10.1006/jcis.2001.7477.
  • [8] SIBIYA N.P., RATHILAL S., TETTEH E.K., Coagulation treatment of wastewater. Kinetics and natural coagulant evaluation, Molecules, 2021, 26 (3), 698. DOI: 1420-3049/26/3/698.
  • [9] SMOLUCHOWSKI M., Attempt at a mathematical theory of the coagulation kinetics of colloidal solutions, Z. Phys. Chem., 1917, 92, 129–168 (in German).
  • [10] MÜLLER H., On the general theory of rapid coagulation, Kolloidbeihefte, 1928, 27, 223–250 (in German).
  • [11] WANG K.J., WANG P.S., NGUYEN H.P., A data-driven optimization model for coagulant dosage decision in industrial wastewater treatment, Comp. Chem. Eng., 2021, 152 (2), 107383. DOI: 10.1016/j. compchemeng.2021.107383.
  • [12] TAN J., YU Y., Polysilicate aluminum ferrite coagulant dyeing wastewater treatment simulation and computer simulation research, ICSAC, 2019, 91–94.
  • [13] YANG Z., YANG H., JIANG Z., HUANG X., LI H., LI A., CHENG R., A new method for calculation of flocculation kinetics combining Smoluchowski model with fractal theory, Coll. Surf. A, 2013, 423, 11–19. DOI: 10.1016/j.colsurfa.2013.01.058.
  • [14] RATNAWEERA H., LEI L., LINDHOLM O., Simulation program from wastewater coagulation, Water Sci. Technol., 2002, 46 (4–5), 27–33. DOI: 10.2166/wst.2002.0543.
  • [15] ZANGOOEI H., DELNAVAZ M., ASADOLLAHFARDI G., Prediction of coagulation and flocculation processes using ANN models and fuzzy regression, Water Sci. Technol., 2016, 74 (6), 1296–1311. DOI: 10.2166/wst.2016.315.
  • [16] MANAMPERUMA L., WEI L., RATNAWEERA H., Multi-parameter based coagulant dosing control, Water Sci. Technol., 2017, 75 (9), 2157–2162. DOI: 10.2166/wst.2017.058.
  • [17] ABUJAZAR M.S.S., KARAAGAC S.U., AMR S.S.A., ALAZAIZA M.Y.D., BASHIR M.J.K., Recent advance-ment in the application of hybrid coagulants in coagulation-flocculation of wastewater. A review, J. Clean. Prod., 2022, 345, 131133. DOI: 10.1016/j.jclepro.2022.131133.
  • [18] MA J., ZHANG R., XIA W., KONG Y., NIE Y., ZHOU Y., ZHANG C., Coagulation performance of Al/Fe based covalently bonded composite coagulants for algae removal, Sep. Purif. Technol., 2022, 285, 120401. DOI: 10.1016/j.seppur.2021.120401.
  • [19] NIMESHA S., HEWAWASAM C., JAYASANKA D.J., Effectiveness of natural coagulants in water and wastewater treatment, Global J. Environ. Sci. Manage., 2022, 8 (29), 101–116. DOI: 10.22034/GJESM. 2022.01.08.
  • [20] KOUL B., BHAT N., ABUBAKAR M., MISHRA M., ARUKHA A.P., YADAW D., Application of natural coagulants in water treatment: A sustainable alternative to chemicals, Water, 2022, 14 (22), 3751. DOI: 10.3390/w14223751.
  • [21] TZOUPANOS N.D., ZOUBOULIS A.I., Novel inorganic-organic composite coagulants based on aluminium, Desal. Water Treat., 2010, 13 (1–3), 340–347. DOI: 10.5004/dwt.2010.1042.
  • [22] AHMED A.E., MAJEWSKA-NOWAK K., Removal of reactive dye from aqueous solutions using banana peel and sugarcane bagasse as biosorbents, Environ. Prot. Eng., 2020, 46 (3), 121–135. DOI: 10.37190/epe 200308.
  • [23] IGWEGBE C.A., ONUKWULI O.D., Removal of total dissolved solids (TDS) from aquaculture wastewater by coagulation-flocculation process using sesamum indicum extract. Effect of operating parameters and coagulation-flocculation kinetics, Pharm. Chem. J., 2019, 6 (4), 32–45.
  • [24] MAGESHKUMAR M., KARTHIKEYAN R., Modelling the kinetics of coagulation process for tannery industry effluent treatment using moringa oleifera seeds protein, Desal. Water Treat., 2016, 57 (32), 14954–14964. DOI: 10.1080/19443994.2015.1070294.
  • [25] ILOAMAEKE I.M., NNAJI N.J., OKPALA E.C., EBOATU A.N., ONUEGBU T.U., Mercenaria mercenaria shell: coagulation-flocculation studies on colour removal by response surface methodology and nephlometric kinetics of an industrial effluent, J. Environ. Chem. Eng., 2021, 9 (30), 105715. DOI: 10.1016/j.jece.2021.105715.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6c0ed07-9959-4ee1-94ca-abf63b450fb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.