Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let (Wi, Ji)iϵN be a sequence of i.i.d. [0, ∞) × R-valued random vectors. Considering the partial sum of the first component and the corresponding maximum of the second component, we are interested in the limit distributions that can be obtained under an appropriate scaling. In the case that Wi and Ji are independent, the joint distribution of the sum and the maximum is the product measure of the limit distributions of the two components. But if we allow dependence between the two components, this dependence can still appear in the limit, and we need a new theory to describe the possible limit distributions. This is achieved via harmonic analysis on semigroups, which can be utilized to characterize the scaling limit distributions and describe their domains of attraction.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
157--189
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- Institut für Medizinische Biometrie und Informatik, Universität Heidelberg, 69126 Heidelberg, Deutschland
autor
- Department of Mathematics, University of Siegen, 57072 Siegen, Deutschland
Bibliografia
- [1] K. Anderson, Limit theorems for general shock models with infinite mean intershock times, J. Appl. Probab. 24 (1987), pp. 449-476.
- [2] C. van den Berg, J. P. R. Christensen, and P. Ressel, Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions, Springer, New York 1984.
- [3] T. L. Chow and J. L. Teugels, The sum and the maximum of i.i.d. random variables, in: Proceedings of the Second Prague Symposium on Asymptotic Statistics, P. Mandl and M. Huskova (Eds.), North Holland, Amsterdam 1978, pp. 81-92.
- [4] Y. Davydov, I. Molchanov, and S. Zuyev, Strictly stable distributions on convex cones, Electron. J. Probab. 13 (2008), pp. 259-321.
- [5] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. 2, Wiley, New York 1971.
- [6] B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading, Mass., 1968.
- [7] M. M. Meerschaert and H.-P. Scheffler, Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice, Wiley Interscience, New York 2001.
- [8] M. M. Meerschaert and S. A. Stoev, Extremal Limit Theorems for observations separated by random waiting times, J. Statist. Plann. Inference 139 (2009), pp. 2175-2188.
- [9] E. Pancheva, I. K. Mitov, and K. V. Mitov, Limit theorems for extremal processes generated by a point process with correlated time and space components, Statist. Probab. Lett. 79 (2009), pp. 390-395.
- [10] S. I. Resnick, Extreme Values, Regular Variation and Point Processes, Springer, New York 1987.
- [11] R. Schumer, B. Baeumer, and M. M. Meerschaert, Extremal behavior of a coupled continuous time random walk, Phys. A. 390 (2011), pp. 505-511.
- [12] J. G. Shanthikumar and U. Sumita, General shock models associated with correlated renewal sequences, J. Appl. Probab. 20 (1983), pp. 600-614.
- [13] J. G. Shanthikumar and U. Sumita, Distribution properties of the system failure time in a general shock model, Adv. in Appl. Probab. 16 (1984), pp. 363-377.
- [14] J. G. Shanthikumar and U. Sumita, A class of correlated cumulative shock models, Adv. in Appl. Probab. 17 (1985), pp. 347-366.
- [15] D. S. Silvestrov and J. L. Teugels, Limit theorems for mixed max-sum processes with renewal stopping, Ann. Appl. Probab. 14 (2004), pp. 1838-1868.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6b3e46a-25fc-4e7a-9f48-13f4d0b2ac50