PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysing Micromechanisms of Initiation and Propagation of Short Fatigue Cracks from Rivet Holes in the Aluminums Sheets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Researched initiation and propagation of short surfaces fatigue cracks out of open in double-sided botch laminated sheet of aviation aluminum alloy 2024-T3 at stable amplitude one-sided bend (R=0.1). Research of the initial stage of development of cracks is realized by use of a SEM microscope, and it allowed to set the place of origin of crack and mikromechanisms of fracture of aluminum sheets, and also type of front of crack. Established a large enough scatter of velocity of propagation in the area of development of short cracks, which for a sheet from this alloy, with a thickness of 3 mm, reaches 0.5 mm. On the basis of fractografy researches modified model of analytical description of propagation of short fatigue crack is proposed.
Słowa kluczowe
Rocznik
Tom
Strony
84--101
Opis fizyczny
Bibliogr. 10 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
  • Military University of Technology Warsaw, Poland
  • Military University of Technology Warsaw, Poland
Bibliografia
  • [1] Paris, P., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering. 85(4), 60-68.
  • [2] Miller, K. J. (1993). Materials science perspective of metal fatigue resistance. Materials science and technology. 9, 453-462.
  • [3] Newman, J. C., Phillips, E. P., & Swain, M. H. (1999). Fatigue life prediction methodology using small-crack theory, International Journal of Fatigue, 21(2), 109-119.
  • [4] Laz, P. J., & Hillberry, B. M. (1998). Fatigue life prediction from inclusion initiated cracks. International Journal of Fatigue, 20(4), 263-271.
  • [5] Kocanda, D., Kocanda, S., & Torzewski, J. (2003). Variable Amplitude Load Interaction in Fatigue Crack Growth for 2024-T3 Aluminium. Transactions of the Kielce University of Technology, 78, 269-278.
  • [6] Romaniv, O. N., Yarema, S. Ya., Nikiforchin, G. N., Makhutov, N. A., & Stadnik, M. M. (1990). Fatigue and Cyclic Crack-Growth Resistance of Structural Materials. In: Panasyuk V. V. (Eds.), Fracture Mechanics and Strength of Materials. A Handbook [in Russian], 4, Kyiv: Naukova Dumka.
  • [7] Kocanda, D., Hutsaylyuk, V., & Hlado, V. (2007). Analize propagation short fatigue crack from hole and micromechanism fracture lamer sheet aluminium alloy 2024-T3. Military University of Technology WAT Bulletin, 56(4), 37-54.
  • [10] Halliday, M. D., Cooper, C., Poole, P., & Bowen, P. (2003). On predicting small fatigue crack growth and fatigue life from long crack data in 2024 aluminium alloy. International Journal of Fatigue, 25(8), 709-718.
  • [11] Kocanda, D., Kocanda, S., & Kulec, P. (2005). Short fatigue crack in avia aluminum alloy 2024-T3. Scientific Papers. Mechanics [in Polish]. Technical University of Opole, 83(2), 83-90.
  • [12] Li, X. D. (1996). Micromechanical model of stage I to stage II crack growth transition for aluminium alloys. Theoretical and Applied Fracture Mechanics, 24, 217-231.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6b1611c-146e-4bfb-8766-248dd77d170a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.