PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coal-plastic waste blendings. Experimental research and prediction of the thermal process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The topic of waste incineration/co-incineration is critical, given the increasingly stringent regulations on environmental aspects. The widespread use of polymeric materials generates significant waste, posing an ecological problem. Current regulations mandate a reduction in the landfilling of plastic waste, which should be replaced by recycling, with the possibility of exploiting the energy potential due to its high calorific value. The electricity generation in Poland is mainly based on coal, so using polymers as alternative fuels is an important research issue. The research results presented in this paper make it possible to compare the properties of selected waste plastics and coal and their behavior during thermal processes, considering the quality of the gases released. Based on the thermal analyses, a FuzzyTherm model was introduced based on one of the fuzzy logic methods, one of the main artificial intelligence modeling approaches. The model predicts the temperatures corresponding to endothermic and exothermic reactions. The model achieved good accuracy. The maximum relative error between measured and calculated data is lower than 11%. These aspects constitute an innovative element of this paper.
Słowa kluczowe
Rocznik
Strony
117--128
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Dabrowskiego 69, 42-201 Czestochowa, Poland
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Dabrowskiego 69, 42-201 Czestochowa, Poland
autor
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Mickiewicza 30, Krakow, Poland
  • Jan Dlugosz University in Czestochowa, Faculty of Science and Technology, Armii Krajowej 13/15, 42-200 Czestochowa, Poland
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Mickiewicza 30, Krakow, Poland
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Dabrowskiego 69, 42-201 Czestochowa, Poland
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Dabrowskiego 69, 42-201 Czestochowa, Poland
Bibliografia
  • [1] Ongar, B., Beloev, H., Georgiev, A., Iliev, I., & Kijo-Kleczkowska, A. (2023). Optimization of the design and operating characteristics of a boiler based on three-dimensional mathematical modeling. Bulgarian Chemical Communications, 55(2), 153–159. doi: 10.34049/bcc.55.2.AESMT22-54
  • [2] Kijo-Kleczkowska, A., Bruś, P., & Więciorkowski, G. (2022). Profitability analysis of a photovoltaic installation ‒ A case study. Energy, 261, 125310. doi: 10.1016/j.energy.2022.125310
  • [3] Kijo-Kleczkowska, A. (2011). Analysis of cyclic combustion of the coal-water suspension. Archives of Thermodynamics, 32(1),45–75. doi: 10.2478/v10173-011-0003-7
  • [4] Kijo-Kleczkowska, A. (2010). Research on destruction mechanism of drops and evolution of coal-water suspension in combustion process. Archives of Mining Sciences, 55(4), 923–946.
  • [5] Żukowski, W., Jankowski, D., Wrona, J., & Berkowicz-Płatek, G. (2023). Combustion behavior and pollutant emission characteristics of polymers and biomass in a bubbling fluidized bed reactor. Energy, 253, 125953. doi: 10.1016/j.energy.2022.125953
  • [6] Kijo-Kleczkowska, A., & Gnatowski, A. (2022). Recycling of plastic waste, with particular emphasis on thermal methods—review. Energies, 15(6), 15062114. doi:10.3390/en15062114
  • [7] Shaklein, A.A. (2021). Numerical study of polyoxymethylene burning in a combustion reactor. Case Studies in Thermal Engineering, 26, 101114. doi: 10.1016/j.csite.2021.101114
  • [8] Glaznev, R.K., Karpov, A.I., Korobeinichev, O.P., Bolkisev, A.A., Shaklein, A.A., Shmakov, A.G., & Kumar, A. (2019). Experimental and numerical study of polyoxymethylene (Aldrich) combustion in counterflow. Combustion and Flame, 205, 358–367. doi: 10.1016/j.combustflame.2019.04.032
  • [9] Luftl, S., Archodoulaki, V.M., & Seidler, S. (2006). Thermal-oxidative induced degradation behaviour of polyoxymethylene (POM) copolymer detected by TGA/MS. Polymer Degradation and Stability, 91(3), 464–471. doi: 10.1016/j.polymdegradstab.2005.04.029
  • [10] Berkowicz, G., Majka, T. M., & Żukowski, W. (2020). The pyrolysis and combustion of polyoxymethylene in a fluidised bed with the possibility of incorporating CO2. Energy Conversion and Management, 214, 112888. doi: 10.1016/j.enconman.2020.112888
  • [11] Archodoulaki, V.-M., Luftl, S., & Seidler, S. (2004). Thermal degradation behaviour of poly(oxymethylene): 1. Degradation and stabilizer consumption. Polymer Degradation and Stability, 86(1), 75–83. doi: 10.1016/j.polymdegradstab.2004.03.011
  • [12] Archodoulaki, V.-M., Luftl, S., Koch, T., & Seidler, S. (2007). Property changes in polyoxymethylene (POM) resulting from processing, ageing and recycling. Polymer Degradation and Stability, 92(12), 2181–2189. doi: 10.1016/j.polymdegradstab.2007.02.024
  • [13] Duan, Y., Li, H., Ye, L., & Xiaolong Liu. (2006). Study on the thermal degradation of polyoxymethylene by thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR). Journal of Applied Polymer Science, 99(6), 3085–3092. doi: 10.1002/app.22913
  • [14] Fink, J. K. (2014). High Performance Polymers Plastics Design Library (pp. 153–175). William Andrew Publishing.
  • [15] Tadini, P., Grange, N., Chetehouna, K., Gascoin, N., Senave, S., & Reynaud, I. (2017). Thermal degradation analysis of innovative PEKK-based carbon composites for high-temperature aeronautical components. Aerospace Science and Technology, 65,106–116. doi: 10.1016/j.ast.2017.02.011
  • [16] Patel, P. (2011). Investigation of the Fire Behaviour of PEEKbased Polymers and Compounds. University of Central Lancashire.
  • [17] Tsai, C.J., Perng, L.H., & Ling, Y.C. (1997). A study of thermal degradation of poly(aryl-ether-ether-ketone) using step-wise pyrolysis/gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 11(19), 1987–1995. doi:10.1002/(SICI)1097-0231(19971030)11:19<1987::AIDRCM138>3.0.CO;2-Q
  • [18] Patel, P., Hull, R.T., McCabe, R.W., Flath, D., Grasmeder, J., & Percy, M. (2010). Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies. Polymer Degradation and Stability, 95(5), 709–718. doi:10.1016/j.polymdegradstab.2010.01.024
  • [19] Ramgobin, A., Fontaine, G., & Bourbigot, S. (2020). A case study of polyether ether ketone (I): Investigating the thermal and fire behavior of a high-performance material. Polymers, 12(8), 1789. doi: 10.3390/polym12081789
  • [20] García, A.N., Viciano, N., & Font, R. (2007). Products obtained in the fuel-rich combustion of PTFE at high temperature. Journal of Analytical and Applied Pyrolysis, 80(1), 85–91. doi: 10.1016/j.jaap.2007.01.004
  • [21] Blumm, J., Lindemann, A., Meyer, M., & Strasser, C. (2010). Characterization of PTFE using advanced thermal analysis techniques. International Journal of Thermophysics, 31(10), 1919–1927. doi: 10.1007/s10765-008-0512-z
  • [22] Zhou, X., Xiao, F., Yang, R., Huang, F., & Li, J. (2020). Investigation of the ignition and combustion of compressed aluminum/polytetrafluoroethylene bulk composites. Journal of Thermal Analysis and Calorimetry, 139(6), 3013–3021. doi:10.1007/s10973-019-08662-2
  • [23] Kok, M.V. (2012). Simultaneous thermogravimetry–calorimetry study on the combustion of coal samples: Effect of heating rate. Energy Conversion and Management, 53(1), 40–44. doi:10.1016/j.enconman.2011.08.005
  • [24] Eterigho-Ikelegbe, O., Yoro, K.O., & Bada, S. (2021). Coal as a filler in polymer composites: A review. Resources, Conservation and Recycling, 174, 105756. doi: 10.1016/j.resconrec.2021.105756
  • [25] Amjad, A., Ashraf, W.M., Uddin, G.M., & Krzywanski, J. (2023). Artificial intelligence model of fuel blendings as a step toward the zero emissions optimization of a 660 MWe supercritical power plant performance. Energy Science & Engineering,11(8), 2899–911. doi: 10.1002/ese3.1499
  • [26] Krzywanski, J., Blaszczuk, A., Czakiert, T., Rajczyk, R., & Nowak, W. (2014). Artificial intelligence treatment of NOX emissions from CFBC in air and oxy-fuel conditions. In CFB-11: Proceedings of the 11th International Conference on Fluidized Bed Technology (pp. 619–24).
  • [27] Krzywanski, J., Sztekler, K., Bugaj, M., Kalawa, W., Grabowska, K., Chaja, P.R., et al. (2021). Adsorption chiller in a combined heating and cooling system: Simulation and optimization by neural networks. Bulletin of the Polish Academy of Sciences: Technical Sciences, 69(3), 137054. doi: 10.24425/bpasts.2021.137054
  • [28] Stanek, W., & Rusinowski, H. (2008). Application of empirical modelling for construction of auxiliary models of steam boiler. Archives of Thermodynamics, 29(4), 165–176.
  • [29] Krzywanski, J., Czakiert, T., Muskala, W., Sekret, R., & Nowak, W. (2010). Modeling of solid fuel combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler. Part 2. Numerical simulations of heat transfer and gaseous pollutant emissions associated with coal combustion in O2/CO2 and O2/N2 atmospheres enriched with oxygen under circulating fluidized bed conditions. Fuel Processing Technology, 91(3), 364–368. doi:10.1016/j.fuproc.2009.11.008
  • [30] Krzywanski, J., Grabowska, K., Sosnowski, M., Zyłka, A., Sztekler, K., Kalawa, W., et al. (2018). Modeling of a re-heat twostage adsorption chiller by AI approach. MATEC Web of Conferences, 240, 05014. doi: 10.1051/matecconf/ 201824005014
  • [31] Ashraf, W.M., Uddin, G.M., Kamal, A.H., Khan, M.H., Khan, A.A., Ahmad, H.A., Ahmed, F., Hafeez, N., Sami, R.M.Z., Arafat, S.M., Niazi, S.G., Rafique, M.W., Amjad, A., Hussain, J., Jamil, H., Kathia, M.S., & Krzywanski, J. (2020). Optimization of a 660 MWe supercritical power plant performance ‒ A case of industry 4.0 in the data-driven operational management, Part 2. power generation. Energies, 13(21), 5619, doi: 10.3390/en13215619
  • [32] ThermoFisher Scientific. (n.d.). Catalog number: 11206100. https://www.thermofisher.com/order/catalog/product/11206100 [accessed 17 Jan. 2023].
  • [33] Leco Empowering Results. (n.d.). https://pl.leco.com/product/ac600 [accessed 17 Jan. 2023].
  • [34] Netzsch Proven Excellence. (n.d.). https://analyzing-testing.netzsch.com/en/products/simultaneous-thermogravimetrydifferential-scanning-calorimetry-sta-tg-dsc/sta-449-f3-jupiter [accessed 17 Jan. 2023].
  • [35] Labcompare. (n.d.). https://www.labcompare.com/471-Dilatometer-Dilatometry-DIL/9818927-Heating-Microscope-Misura-3-HSM-HSML [accessed 17 Jan. 2023].
  • [36] Krzywanski, J., Wesolowska, M., Blaszczuk, A., Majchrzak, A., Komorowski, M., & Nowak, W. (2018). Fuzzy logic and bed-towall heat transfer in a large-scale CFBC. International Journal of Numerical Methods for Heat & Fluid Flow, 28(1), 254–266. doi:10.1108/hff-09-2017-0357
  • [37] Kijo-Kleczkowska, A., Gnatowski, A., Krzywanski, J., Gajek, M., Szumera, M., Tora, B., Kogut K., & Knaś, K. (2024). Experimental research and prediction of heat generation during plastics, coal and biomass waste combustion using thermal analysis methods. Energy, 290, 130168, doi: 10.1016/j.energy.2023.130168
  • [38] NIST Chemistry WebBook. (2023). NIST Standard Reference Database Number 69. doi: 10.18434/T47C7Z
  • [39] Krzywanski, J. (2019). Heat transfer performance in a superheater of an industrial CFBC using fuzzy logic-based methods. Entropy, 21(10), 919. doi: 10.3390/e21100919
  • [40] Krzywanski, J., Czakiert, T., Zylka, A., Nowak, W., Sosnowski, M., Grabowska, K., et al. (2022). Modelling of SO2 and NOx Emissions from Coal and Biomass Combustion in Air-Firing, Oxyfuel, iG-CLC, and CLOU Conditions by Fuzzy Logic Approach. Energies, 15(21), 8095. doi: 10.3390/en15218095
  • [41] Krzywanski, J., Urbaniak, D., Otwinowski, H., Wylecial, T., & Sosnowski, M. (2020). Fluidized bed jet milling process optimized for mass and particle size with a fuzzy logic approach. Materials, 13(15), 3303. doi: 10.3390/ma13153303
  • [42] Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 1399. doi: 10.1109/TSMC.1985.6313399
  • [43] Krzywanski, J., Czakiert, T., Nowak, W., Shimizu, T., Zylka, A., Idziak, K., Sosnowski, M., & Grabowska, K. (2022). Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility: A comprehensive model. Energy, 251, 123896. doi: 10.1016/j.energy.2022.123896
  • [44] Ross, T. J. (2004). Fuzzy Logic with Engineering Applications.John Wiley.
  • [45] Otwinowski, H., Krzywanski, J., Urbaniak, D., Wylecial, T., & Sosnowski, M. (2022). Comprehensive knowledge-driven ai system for air classification process. Materials, 15(1), 45. doi:10.3390/ma15010045
  • [46] Maroušek, J. (2023). Aluminum nanoparticles from liquid packaging board improve the competitiveness of (bio)diesel. Clean Technologies and Environmental Policy, 25(7), 1059–1067. doi:10.1007/s10098-022-02413-y
  • [47] Rabe, M., Drożdż, W., Widera, K., Łopatka, A., Leżyński, P., Streimikiene, D., & Bilan, Y. (2022). Assessment of energy storage for energy strategies development on a regional scale. Acta Montanistica Slovaca, 27(1), 163–177. doi: 10.46544/AMS.v27i1.12
  • [48] Razminienė, K., Vinogradova, I., & Tvaronavičienė M. (2021). Clusters in transition to circular economy: Evaluation of relation. Acta Montanistica Slovaca, 26(3), 455–465. doi: 10.46544/AMS.v26i3.06
  • [49] Pavolová, P., Bakalár, T., Kyšeľa, K., Klimek, M., Hajduová, Z., & Zawada, M. (2021). The analysis of investment into industries based on portfolio managers. Acta Montanistica Slovaca, 26(1),161–170. doi: 10.46544/AMS.v26i1.14
  • [50] Akbari, M., Loganathan, N., Tavokolian, H., Mardani, A., & Streimikiene, D. (2021). The dynamic effect of micro-structural shocks on private investment behavior. Acta Montanistica Slovaca, 26(1), 1–17. doi: 10.46544/AMS.v26i1.01
  • [51] Zvarikova, K., Rowland, M., & Krulicky, T. (2021). Sustainable Industry 4.0 wireless networks, smart factory performance, and cognitive automation in cyber-physical system-based manufacturing. Journal of Self-Governance and Management Economics, 9(1), 9–21. doi: 10.22381/jsme9420211
  • [52] Kovacova, M., & Lăzăroiu, G. (2021). Sustainable organizational performance, cyber-physical production networks, and deep learning-assisted smart process planning in Industry 4.0-based manufacturing systems. Economics, Management, and Financial Markets, 16(4), 41–54. doi: 10.22381/emfm16320212
  • [53] Durana, P., Perkins, N., & Valaskova, K. (2021). Artificial intelligence data-driven internet of things systems, real-time advanced analytics, and cyber-physical production networks in sustainable smart manufacturing. Economics, Management, and Financial Markets, 16(1), 20–30. doi: 10.22381/emfm16120212
  • [54] Skare, M., Porada-Rochon´, M., & Blazevic-Buric, S. (2021). Energy cycles: Nature, turning points and role in England economic growth from 1700 to 2018. Acta Montanistica Slovaca, 26(2),281–302. doi: 10.46544/AMS.v26i2.08
  • [55] Zheng, Z., Xu, Z., Skare, M., & Porada-Rochon, M. (2021). A comprehensive bibliometric analysis of the energy poverty literature: From 1942 to 2020. Acta Montanistica Slovaca, 26(3),512–533. doi: 10.46544/AMS.v26i3.10
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6afd31a-a82d-44a4-adb5-ed99ae53550e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.