PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Performance of Mn/Bi2O3 Pyrotechnic Time Delay Compositions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chemical time delay detonators are used widely in mine blasting applications. In order to achieve effective blasting, detonations must follow a precisely controlled timing sequence in a specified firing pattern. Silicon fuel-based pyrotechnic compositions are widely used in mining detonators and are well studied. However, some of these formulations are deemed to be problematic, as they contain heavy metals which are bio-accumulative and toxic to the environment. Therefore, there is need to explore alternative formulations which are suitable for these applications. Manganese-fueled systems are attractive due to their metallic properties and several oxidation states of the manganese fuel. This study focused on characterizing the burn properties of Mn/Bi2O3 compositions for slow to intermediate time delay applications. The compositions supported combustion in the 25 to 55 wt.% Mn range in an inert helium atmosphere. Burn rates between 2.5 and 11.2 mm·s–1 were recorded in open burn tests, whilst closed burn tests in glass tubes resulted in burn rates of 6.3 to 11.2 mm·s–1. Both X-ray diffraction analysis of the reaction products and thermodynamic simulations confirmed that MnO and Bi are the main reaction products, with unreacted Mn and Bi2O3 also being detected. This suggests that the dominant reaction for this composition is a simple thermite-type reaction.
Słowa kluczowe
Rocznik
Strony
46--62
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
autor
  • Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
  • Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
Bibliografia
  • [1] McLain, J.H. Pyrotechnics: From the Viewpoint of Solid State Chemistry. Franklin Institute Press, Philadelphia, 1980.
  • [2] Berger, B. Parameters Influencing the Pyrotechnic Reaction. Propellants Explos. Pyrotech. 2005, 30(1): 27-35.
  • [3] Kosanke, K.; Kosanke, B.; Sturman, B.; Shimizu, T.; Wilson, M.; von Maltitz, I.; Hancox, R.; Kubota, N.; Jennings-White, C.; Chapman, D. Pyrotechnic Chemistry. Pyrotechnic Reference Series, No. 4. Huntingdon, UK, Journal of Pyrotechnics Inc. & CarnDu Ltd, 2000.
  • [4] Koch, E.C.; Clement, D. Special Materials in Pyrotechnics: VI. Silicon – an Old Fuel with New Perspectives. Propellants Explos. Pyrotech. 2007, 32(3): 205-212.
  • [5] Drennan, R.L.; Brown, M.E. Binary and Ternary Pyrotechnic Systems of Mn and/or Mo and BaO2 and/or SrO2. Part 2. Combustion Studies. Thermochim. Acta 1992, 208: 223-246.
  • [6] Montgomery, Y.C.; Focke, W.W.; Atanasova, M.; Del Fabbro, O.; Kelly, C. Mn+Sb2O3 Thermite/Intermetallic Delay Compositions. Propellants Explos. Pyrotech. 2016, 41(5): 919-925.
  • [7] Swanepoel, D.; Del Fabbro, O.; Focke, W.W.; Conradie, C. Manganese as Fuel in Slow‐burning Pyrotechnic Time Delay Compositions. Propellants Explos. Pyrotech. 2010, 35(2): 105-113.
  • [8] Guo, S.; Focke, W.W.; Tichapondwa, S.M. Sn/Mn/Bi2O3 Ternary Pyrotechnic Time Delay Compositions. ACS Sustain. Chem. Eng. 2020, 8(38): 14524-14530.
  • [9] Kappagantula, K.S.; Clark, B.; Pantoya, M.L. Flame Propagation Experiments of non-Gas-Generating Nanocomposite Reactive Materials. Energy Fuels 2011, 25: 640-646.
  • [10] Miklaszewski, E.J.; Shaw, A.P.; Poret, J.C.; Son, S.F.; Groven, L. Performance and Aging of Mn/MnO2 an Environmentally Friendly Energetic Time Delay Composition. ACS Sustain. Chem. Eng. 2014, 2: 1312-1317.
  • [11] Ilunga, K.; Del Fabbro, O.; Yapi, L.; Focke W.W. The effect of Si-Bi2O3 on the Ignition of the Al-CuO Thermite. Powder Technol. 2011, 205: 97-102.
  • [12] Tichapondwa, S.M.; Focke, W.W.; Del Fabbro, O.; Gisby, J.; Kelly, C. A Comparative Study of Si-BaSO4 and Si-CaSO4 Pyrotechnic Time-delay Compositions. J. Energ. Mater. 2016, 34: 342-356.
  • [13] Rapoport, E.; Kennedy, G.C. Phase Diagram of Manganese to 40 kbars. J. Phys. Chem. Solids. 1966, 27: 93-98.
  • [14] Wells, A. Structural Inorganic Chemistry. Oxford University Press, 2012.
  • [15] Focke, W.W.; Tichapondwa, S.M.; Montgomery, Y.C.; Grobler, M.; Kalombo, L.Review of Gasless Pyrotechnic Time Delays. Propellants Explos. Pyrotech. 2019, 44(1): 55-93.
  • [16] Govender, D.; Focke, W.W.; Tichapondwa, S.M.; Cloete, W.E. Burn Rate of Calcium Sulfate Dehydrate – Aluminium Thermites. ACS Appl. Mater. Interfaces. 2018, 10(24): 20679-20687.
  • [17] Shaw, A.P.G. Thermitic Thermodynamics: A Computational Survey and Comprehensive Interpretation of over 800 Combinations of Metals, Metalloids, and Oxides. CRC Press, 2020.
  • [18] Tichapondwa, S.M.; Focke, W.W.; Del Fabbro, O.; Labuschagne, G. The Effect of Additives on the Burning Rate of Silicon‐Calcium Sulfate Pyrotechnic Delay Compositions. Propellants Explos. Pyrotech. 2016, 41(4): 732-739.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6ab758b-bd10-4e83-9495-47d234a72422
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.