PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Health monitoring of the Veresk Bridge by comparing the results of precision instrument measurements and modelling with Abaqus software and wavelet function

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Monitoring stanu mostu Veresk – porównanie wyników uzyskanych z precyzyjnych przyrządów pomiarowych oraz z modelowania z zastosowaniem programu Abaqus i funkcji falkowej
Języki publikacji
EN PL
Abstrakty
EN
Identification and classification of structural failures is a vital aspect of bridge maintenance. When local structural damage is identified without delay, its repair is less expensive and problematic than in the case of general damage. To determine seismic vulnerability or post-seismic damage, structural health assessments are frequently performed on bridges, dams, and buildings. The aim of this study is to keep track of the overall health of the Veresk Railway Bridge, which has been in service for over 90 years. For this purpose, the structure was modeled in the ABAQUS finite element software. Mode shapes of the structure were then extracted, the positions were determined as maximum points using MATLAB software, and a wavelet function was applied to these shapes. The results showed that the wavelet function is highly accurate and its results are close to the real values measured for the bridge.
PL
Identyfikacja i klasyfikacja uszkodzeń konstrukcji nośnej stanowi niezwykle ważny aspekt utrzymania mostów. Odpowiednio szybkie rozpoznanie lokalnych uszkodzeń pozwala na ograniczenie kosztów i problemów związanych z ich naprawą w porównaniu do konieczności remontu całej konstrukcji. Aby określić podatność obiektów na oddziaływania sejsmiczne lub zbadać związane z nimi uszkodzenia często przeprowadza się ocenę stanu technicznego mostów, zapór i budynków. Celem niniejszej pracy jest zbadanie uszkodzeń i ogólnego stanu technicznego mostu kolejowego w Veresk, który jest eksploatowany od ponad 90 lat. W tym celu wykonano model mostu w oprogramowaniu ABAQUS przeznaczonym do analizy metodą elementów skończonych. Uzyskano postacie drgań własnych konstrukcji – pozycje określono jako punkty maksymalne w programie MATLAB – po czym zastosowano do nich transformację falkową. Wyniki analizy wykazały, że transformacja falkowa jest bardzo dokładna, a uzyskane wartości są zbliżone do rzeczywistych wyników pomiarów wykonanych na moście.
Rocznik
Strony
181--199
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Islamic Azad University, Department of Civil Engineering, Shahroud Branch, Shahroud, Iran
autor
  • Shahrood University of Technology, Faculty of Civil Engineering, Shahrood, P.O. Box: 3619995161, Iran
Bibliografia
  • 1. Fabozzi S., Licata V., Autuori S., Bilotta E.: Prediction of the seismic behavior of an underground railway station and a tunnel in Napoli. Underground Space, 2, 2, 2017, 45-61, DOI: 10.1016/j.undsp.2017.03.005
  • 2. Omenzetter P., Brownjohn J.M.W.: Application of time series analysis for bridge monitoring. Smart Materials and Structures, 15, 1, 2006, 129-138, DOI: 10.1088/0964-1726/15/1/041
  • 3. Glisic B., Inaudi D.: Fibre Optic Methods for Structural Health Monitoring. John Wiley & Sons, Chichester, 2007
  • 4. Manouchehrian A., Cai M.: Simulation of unstable rock failure under unloading conditions. Canadian Geotechnical Journal, 53, 1, 2016, 22-34, DOI: 10.1139/cgj-2015-0126
  • 5. Seyedpoor S.M., Yazdanpanah O.: An efficient indicator for structural damage localization using the change of strain energy based on static noisy data. Applied Mathematical Modelling, 38, 9-10, 2014, 2661-2672, DOI: 10.1016/j.apm.2013.10.072
  • 6. Yang H., Xu F., Ma J., Huang K.: Strain modal-based damage identification method and its application to crane girder without original model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233, 4, 2019, 1299-1311, DOI: 10.1177/0954406218769924
  • 7. Ma J., Kharboutly H., Benali A., Ben Amar F., Bouzit M.: Joint angle estimation with accelerometers for dynamic postural analysis. Journal of Biomechanics, 48, 13, 2015, 3616-3624, DOI: 10.1016/j.jbiomech.2015.08.008
  • 8. Sanchez J.C.: Evaluation of Structural Damage Identification Methods Based on Dynamic Characteristics. Ph.D. Dissertation, Department of Civil Engineering, University of Puerto Rico, 2005
  • 9. Park B., Sohn H., Yeum C.M., Truong T.C.: Laser ultrasonic imaging and damage detection for a rotating structure. Structural Health Monitoring, 12, 5-6, 2013, 494-506, DOI: 10.1177/1475921713507100
  • 10. Kaloop M.R., Elbeltagi E., Hu J.W.: Recent Advances of Structures Monitoring and Evaluation Using GPS-Time Series Monitoring Systems: A Review. International Journal of Geo-Information, 6, 12, 2017, 382, DOI: 10.3390/ijgi6120382
  • 11. Abou-Galala M., Rabah M., Kaloop M., Zidan Z.M.: Assessment of the accuracy and convergence period of Precise Point Positioning. Mansoura Engineering Journal, 57, 2, 2016, 1-5, DOI: 10.21608/bfemu.2020.98819
  • 12. Yigit C.O., Gurlek E.: Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomatics Natural Hazards and Risk, 8, 2, 2017, 893-904, DOI: 10.1080/19475705.2017.1284160
  • 13. Geng J., Meng X., Dodson A.H., Ge M., Teferle F.N.: Rapid re-convergences to ambiguity-fixed solutions in precise point positioning. Journal of Geodesy, 84, 12, 2010, 705-714, DOI: 10.1007/s00190-010-0404-4
  • 14. Ge M., Gendt G., Rothacher M.A., Shi C., Liu J.: Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82, 7, 2008, 389-399, DOI: 10.1007/s00190-007-0187-4
  • 15. Li W., Kong Q., Ho S.C.M., Mo Y.L., Song G.: Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures. Smart Materials and Structures, 25, 11, 2016, ID article: 115031, DOI: 10.1088/0964-1726/25/11/115031
  • 16. Dehghani E., Zadeh M.N., Nabizadeh A.: Evaluation of seismic behavior of railway bridges considering track-bridge interaction. Roads and Bridges – Drogi i Mosty, 18, 1, 2019, 51-66, DOI: 10.7409/rabdim.019.004
  • 17. Xia Q., Cheng Y.Y., Zhang J., Zhu F.Q.: In-service condition assessment of a long-span suspension bridge using temperature-induced strain data. Journal of Bridge Engineering, 22, 3, 2017, ID article: a04016124, DOI: 10.1061/(ASCE)BE.1943-5592.0001003
  • 18. Ni Y.Q., Xia Y.X.: Strain-based condition assessment of a suspension bridge instrumented with structural health monitoring system. International Journal of Structural Stability and Dynamics, 16, 4, 2016, ID article: 1640027, DOI: 10.1142/S0219455416400277
  • 19. Khordmand S.A., Selajgeh M.: Determining damage in bending plates by wavelet method and its severity. Master’s thesis, Shahid Bahonar University, Kerman, 2018
  • 20. Haynes C., Todd M.: Enhanced damage localization for complex structures through statistical modelling and sensor fusion. Mechanical Systems and Signal Processing, 54-55, 2015, 195-209, DOI: 10.1016/j.ymssp.2014.08.015
  • 21. Xiao C., Qu W.L., Tan D.M.: An application of data fusion technology in structural health monitoring and damage identification. Proceedings of SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, 5758, 2005, 451-461, DOI: 10.1117/12.599783
  • 22. Bao X., Xia Z., Ye G.: Numerical analysis on the seismic behavior of a large metro subway tunnel in liquefiable ground. Tunnelling and Underground Space Technology, 6, 6, 2017, 35-52, DOI: 10.1016/j.tust.2017.04.005
  • 23. Regulations of the technical and executive system of the Islamic Republic of Iran No. 139 – Standard Loads for Bridges (in Persian), 2000, https://shaghool.ir/Files/139-AeinNameBargozaryPolha.pdf (15.03.2023)
  • 24. Szafrański M.: Dynamic analysis of the railway bridge span under moving loads. Roads and Bridges – Drogi i Mosty, 17, 4, 2018, 299-316, DOI: 10.7409/rabdim.018.019
  • 25. Regulations of the technical and executive system of the Islamic Republic of Iran No. 308 – Guideline for Design of Retaining Walls, 2017 (in Persian), https://geoparsian.com/wp-content/uploads/2020/12/Code-308-1.pdf (15.03.2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6aac745-da61-4863-a453-374366564462
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.