
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 19−25 (2019)

 19

A model of the process of writing and deleting file information on a disk
with NTFS

A. CHOJNACKI, F. DARNOWSKI

andrzej.chojnacki@wat.edu.pl, darnowski.fryderyk@gmail.com

Military University of Technology, Faculty of Cybernetics
Institute of Computer and Information Systems

Kaliskiego Str. 2, 00-908 Warsaw, Poland

This paper aims at demonstrating a mathematical model of the process of writing and deleting information
about files on a disk, using the contents of the $MFT system file, i.e. in a file generated in the NTFS (New
Technology File System). The presented model uses the language of control theory, where the state of
the system is equal to the state of the disk and the state of the $MFT file, and where control is understood as
undertaking the action of writing or deleting. The deterministic nature of the process and its stationarity were
assumed. Then, based on the transition function after its specification, we suggest constructing further inverse
images of possible prior states at subsequent stages of data writing or deletion. The obtained results form
the basis for the implementations developed.

Keywords: hard drive, NTFS, $MFT.

DOI: 10.5604/01.3001.0013.6602

1. Introduction

There are many methods of data retrieval from
storage devices [1]. This also accounts for disks
in which the files are organized in accordance
with the widely used Microsoft Corporation
standard for Windows operating systems starting
from NT 3.1 that is with the NTFS (New
Technology File System), replacing the FAT file
system (File Allocation Table) used previously
with smaller disks. What is characteristic for the
NTFS is that it uses system files, and among
them, the $MFT system file (Master File Table)
as the most important system file from the point
of view of data file distribution. The information
found in that core file, hereinafter referred to as
the $MFT table, indicates the state of file
attributes on the disk at the moment of analysis,
but it may also contain information regarding
data stream writing and deletion. Such an
example process is described in [2], with
a simultaneous analysis of the content of the
$MFT table and disk memory. The conclusions
drawn in [2] have led us to draw a model
allowing for the implementation of this process
in order to examine its properties from the point
of view of its usability in data retrieval. The aim
of this model is therefore the mathematical
description of the changes of information within
the $MFT table and on the disk resulting from

a sequence of writings and deletions of data files
in such a way that we can analyze how this
process might have proceeded, based on a set of
“reverse” processes for a given $MFT table and
drive content. The process of data writing and
deletion is, under certain circumstances,
absolutely unequivocal. This, however, cannot
be said about the “reverse” process, and thus
only potentially obtainable sets can be the result
of the analysis. Nevertheless, in many cases,
these are sufficient to locate the lost data on the
disk, especially when the analysis is carried out
by a person with additional information
regarding the lost data.

2. Assumption

We will only consider files of written or deleted
by user, hereinafter referred to as the files,
contrary to the $MFT table, which, from the
point of view of the operating system, is also
a file. Let us consider a deterministic file-writing
process in which each time we know the size of
the file to be written and we have all the
necessary information regarding the distribution
of the data on the disk and the $MFT table.
This means that we are not analyzing a case of
stream writing, in which the size of the file
written is unknown, and the location is assigned
dynamically. Such case is described in detail
in [3]. Comprehensive knowledge of the

Andrzej Chojnacki, Fryderyk Darnowski, A model of the process of writing and deleting file information...

 20

contents of the disk and the $MFT table also
take in the case of data deletion. We have
excluded from the analysis issues related to
multitasking, data buffering, defragmentation
and other features characteristic of disks with
operating systems installed. That is why we omit
those disk fragments used by the operating
system or occupied by system files or folders.

Let us further assume that each file being
written has a cluster fold size and all its
attributes fall into one $MFT table record. When
writing a file, its attributes are located in the first
free record of the $MFT table, i.e. in a record
where the deletion tag equals 1, and the record
had not been used previously. In the latter case,
another $MFT record will be created.

We assume a finite period of time in which
writing and deletion operations are performed on
the disk in a serial manner, and the physical
parameters of the disk do not change over
the given period of time. A subsequent operation
can only start when the previous one has come to
an end. We assume the discretization of time,
where the numbers of subsequent moments
are related to the writing or deletion operations
undertaken. Therefore, those numbers
correspond to the numbers of time periods in
which subsequent operations are carried out.

The data file to be written is saved in one
area, but this area can consist of many fragments
located in various parts of the disk. File writing
takes place in accordance with the BFA
algorithm (Best Fit Algorithm). This means
placing the file in one compact area of the size
closest to the size of the file to be written. If
there exists more than one such area, the one that
is closest to the beginning of the disk is selected.
If such a compact area does not exist, then the
fragment of the file is written in the largest
available compact area, and the rest of the file is
written in accordance with the BFA principle
above. This way, the file remains fragmented,
and the information about its location is stored in
one $MFT table record. It might also happen that
the file to be written is larger than all the disk
fragments available for writing. In such cases,
we assume that the file is omitted, another
writing and deletion operation is undertaken, and
the system administrator is informed about
the situation. Examples of the above process
are presented in [2] and detailed explanation of
the file system is presented in [4].

3. Description of the $MFT table

We divide the time period in question into 1T +
ranges, whose length can vary. Let

{ }0,1,2, ,T=  denotes the set of numbers of
those time periods. The beginning of the time
period numbered 0 denotes the period of time
for which we wish to locate the lost data, and
time period T denotes the moment when we
start data retrieval. The beginnings of time
periods from zero to 1T − denote undertaking
the action of writing or deletion.

Let K denotes the maximum number of
records that the $MFT table can contain. Below,
we list the attributes within the k -th $MFT table
record and analyzed at the beginning of the t
time period:
• deletion counter, denoted by k

tL ∈ (where

{ }0,1,2,=  denotes a set of natural
numbers); the value of the deletion counter
denotes how many times the files, whose
attributes have been allocated in the k -th
record, have been deleted (from the
beginning of the t time period, accounting
for the time before the time period in
question);

• deletion counter, whose value is denoted by
{ }0,1k

tB ∈ , where 1k
tB = denotes that

k -th record has been deleted in the time
period prior to the t time period or before
the 0t = time period, and after its deletion
it has not been overwritten, and 0k

tB = ,
denotes the reverse situation.
Of course, notations proposed above, are

based on real physical data that can be read from
$MFT file.

The value of the deletion counter must not
decrease with time, which means that for the
saved $MFT table record:

()' ''', '' 0, : ' '' k k
t tt t T t t L L∀ = < ⇒ ≤ (1)

An attempt to write a file results in data
writing of this file in one or more fragments, or
a failure to do so, if the size of the available disk
areas is too small to fit the file.

Let MD +∈ (where + denotes a set of
positive numbers) denotes the size of the disk in
clusters numbered with a variable, assuming
values from 1 to MD , with each pair of adjacent
clusters numbered with a pair of consecutive
numbers.

Let k
tR +∈ denotes the number of

fragments on which the file presented in
the k -th record of the $MFT table is written.
The value 1k

tR = means that the file was
written in one compact area. Otherwise, the file
was fragmented into 1, k

tr R= numbered

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 19−25 (2019)

 21

variables. The r -th file fragment has been
written in the part of the disk beginning with
the cluster numbered according to ,k r

tPI ∈ .
The written fragments may be of various length,
measured in the number of clusters. Let us
denote it with the symbol ,k r

tWI +∈ . In this
case, we may assume that the area occupied by
the file, whose attributes are in the k -th record
of the $MFT table, can be shown as:

,1 ,1 ,2 ,2

, ,

, , , ,

, ,
k k
t t

k k k k k
t t t t t

k R k R
t t

I PI WI PI WI

PI WI

 



 (2)

Nevertheless, these are disconnected
fragments located on the disk, thus, they meet
the following condition:

()
()

, 1 , 1 ,

, ,

2, :
k k
t t

k k r k r k r
t t t t

k R k R
t t

r R PI WI PI

PI WI MD

− −∀ = + ≤ ∧

∧ + ≤
 (3)

The state of the k -th record of the $MFT
table after the action performed in the t time
period (labelled as k

tM), can thus be shown as:

,

, ,

k
t

k k k
t t t

if k -th record of $MFT table is not

filled in the t -th time period

in reverse situation.

M
L I B

∅


= 



 (4)

File fragments whose attributes are in the
$MFT table, and which were not identified as
deleted, that is all those file fragments whose
names are in the filled $MFT table records and
have not been deleted, must not occupy the same
disk clusters. This applies only to files whose
descriptions are in the $MFT table records,
which are files with numbers from the following
set:

{ }1, : 0k k
t t tk K M B= ≠ ∅ ∧ = (5)

Therefore, the following condition must be
met:

()(

)

' ''

', ' ', ' ', '

'', '' '', '' '', ''

0, ', '' ' 1, , '' 1, :

' '' ' ''

[,)

[,) .

k k
t t t

k r k r k r
t t t

k r k r k r
t t t

t T k k r R r R

k k r r

PI PI WI

PI PI WI

∀ = ∀ ∈ ∀ = =

≠ ∨ ≠ ⇒

⇒ + ∩

∩ + = ∅



(6)

If an empty k -th $MFT table record is
filled due to an action undertaken in the t -th
time period, then it will remain filled also in all
subsequent time periods.

The name of the file, labeled as
(),k

tA Z α∈ becomes an attribute of the file
written in the k -th record in the t -th time

period (where ()Z α is the set of allowable
words created from the α , which can be
the names of the analyzed files, including folder
names, sub-folders and file types). As the k -th
record may not be filled, the attribute of the file
written in it, labeled as k

tD , equals:

,k
k t
t k

t

 if M
D

A in reverse situation.
∅ = ∅= 


 (7)

The name of the file must not repeat in
various $MFT table records corresponding to
undeleted files, hence the following condition is
met:

()' ''0, ', '' : ' '' k k
t t tt T k k k k A A∀ = ∀ = ≠ ⇒ ≠

(8) (8)
The file described in the k -th $MFT table

record analyzed in the t -th time period was
written in that time period or earlier. The number
of the time period in which it was written,
is labeled as ttz . Obviously, 0 ttz t≤ ≤ .
In summary, it may be assumed that the k -th
$MFT table record is described in the t -th time
period by:

, ,k k
t t ttz M D (9)

whose elements are defined with formulas (2),
(4) and (7), that meet criteria (1), (3), (5), (6)
and (8).

4. Description of the disk

Those areas of the disk with the allocated files of
file fragments which are not deleted at the
beginning of the time period t , are the area
whose fragments cannot be overwritten after
undertaking the action of writing. The set of
the numbers of those areas that meet criteria (3)
and (6), will be labeled as t

AO +∈ , that is:

() , , ,

1

[,)
k
t

t

R
k r k r k r

A t t t
k r

t PI PI WI
∈ =

+

 


 (10)

Some of the disk areas occupied by files with
different names will be compact, whereas some
of those areas will be separated by fragments
unallocated any to of the deleted files.

Let us label the number of compact areas in
the ()A t set as t

AO +∈ ; the beginning of
the o -th of them as o

tPA ∈ ; and its length in
clusters as o

tDA +∈ . Having assumed that, we
can depict the ()A t set as a sequence of

Andrzej Chojnacki, Fryderyk Darnowski, A model of the process of writing and deleting file information...

 22

descriptions of the time periods:
() 1 1 2 2, , , ,

, ,
t t
A A

A t t t t

O O
t t

t PA DA PA DA

PA DA

 




 (11)

ordered based on their beginnings, that is:
 12, : .t o o

A t to O PA PA−∀ = < (12)
Based on (3) and (6) we can also infer that:

1 12, :t o o o
A t t to O PA DA PA− −∀ = + ≤ (13)

Entries (10) and (11) will be treated as
equivocal.

The BFA algorithm, which following the
initial assumption is responsible for the process
of file writing, considers only those disk clusters
that are not occupied by files described with
records with numbers that do not belong to the

t set, i.e. are located outside the ()A t set.
The disk area accounted for by the BFA can be
divided into the following areas:
• disk areas with files of file fragments that

were deleted but not overwritten; this area
will be referred to as ()D t ;

• disk areas that were not considered in
the $MFT record table in the time period t ;
these areas will be referred to as ()U t ;

• disk areas occupied by system files or
occupied by the system – following
the initial assumption, these areas are not
taken into account, which is reflected in
the way of numbering the clusters.

All of the above allows us to state that:
() () { } ()1,2, , \D U At t MD t∪ =    (14)

moreover,
() { (

()} (), , ,

1, : : 1 1, :

\

t k
D t k t

k r k r k r
t t t A

t m MD k B r R

PI m PI WI t

= ∃ ∉ = ∧ ∃ =

≤ < +

 


 (15)

as well as
() { } () ()()1,2, , \ .D A Ut MD t t= ∪   (16)

Conditions (15) and (16) mean that

the areas ()A t , ()D t and ()U t are
disjointed pairs, and what is more, their sum
equals { }1,2, ,MD .

Similarly as in the ()A t area, let us
organize the compact fragments belonging to
the ()D t and ()U t areas in sequences
as follows:

()

()

1 1 2 2

1 1 2 2

, , , ,

, , ,

, , , ,

, , ,

t t
D D

t t
U U

D t t t t

O O
t t

U t t t t

O O
t t

t PD DD PD DD

PD DD

t PU DU PU DU

PU DU

 



 






 (17)

where ,o o
t tPD PU denote the beginnings of

fragmented areas respectively, ,o o
t tDD DU

denote their lengths, and ,t t
D UO O the numbers of

those disjointed fragments. If we present the
above sets in this way, parallel conditions must
be met for (12) and (13), that is:

1

1

2, :

2, :

t o o
D t t

t o o
U t t

o O PD PD

o O PU PU

−

−

∀ = <

∀ = <
 (18)

as well as
1 1

1 1

2, :

2, :

t o o o
D t t t

t o o o
U t t t

o O PD DD PD

o O PU DU PU

− −

− −

∀ = + ≤

∀ = + ≤
 (19)

The ()D t and ()U t sets describe the
sets of cluster numbers that may be used by the
BFA algorithm, hence we may assume that for
the purpose of our analysis, the ordered triple:

() () (), ,A D Ut t t   (20)
is a sufficient description of the state of disk
memory in the t -th time period in which this
state does not change. It should also be noted at
this point that in the t -th time period, the above
sets are clearly defined by the $MFT table
records, and the knowledge of any two of those
sets allows to determine the third one.

The operations of the BFA algorithm on the
()D t and ()U t sets result from one more

premise. Namely, in the case of file writing on
the disk, what happens first is the physical
writing of the data on the disk, and only then is
the $MFT table updated.

5. The description of the state of the
process

Let tS denotes the state of the $MFT being
filled and the disk after the operation of writing
or deletion at the beginning of the 1,t T= time
period. Let 0S denotes the beginning state of the
$MFT table and the disk which we would like to
get to know, at least partially.

The state of ()tS t ∈ will be described by
attributes in each $MFT table record, by the
information regarding the location of the data on

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 19−25 (2019)

 23

the disk corresponding to those records and by
submitting the cluster sets that the BFA
algorithm will be able to operate on. In sum, the

tS state can be presented as:

() () ()

1 1, , , , , ,

, ,

K K
t t t t t

A D U

S t M D M D

t t t

 

  
 (21)

This way of presenting the state means that

some pieces of information are repeated, which
results from the conditions described above.

The sequence of the state of processes of
writing and deletion beginning with state 0S
will be labeled as:

0 1 2, , , , TS S S S  (22)

and the set of possible states of this process
for the t time period will be labeled as t .
This way 0 1 T∈ × × ×    . Not all
sequences of states are physically possible,
as each subsequent condition results from
the previous one and the action undertaken.
For example, condition (1) must be met
regarding the change in time of the values for
the deletion counter. Each of those possible
sequences can be treated as a trajectory of the
changes of the states in the process of writing
and deletion.

We shall assume that the process of change
in time is ahistorical, which results from
the previously made assumptions.

6. Description of the action

Following the previously made assumptions,
we shall only discuss two types of actions
undertaken by the system user. These are
the operations of file writing and deletion.
In the case of file writing, the name of the file to
be written is indicated. Let ()tN Z α∈ denote an
action undertaken at the beginning of the time
period .t Following the assumption about
the complete information regarding this file,
at the moment of the attempt to write the file,
the system knows its size expressed in
the number of tc ∈ clusters.

When the action undertaken is that of file
deletion, then only the name of the file to be
deleted is given ()tN Z α∈ , and all other
actions are undertaken by the system.

Thus, a possible action ta undertaken at
the beginning of the t time period can be
defined as follows:

, ,t t t ta b N c (23)
with

{ },
0

t

t t

b WRITE DELETE
c if b DELETE
∈

= =
 (24)

The action ta can be undertaken with
the tS state of the process if this is deletion,
or if it is the action of writing a file of a size that
allows its writing on clusters of the sets ()D t
and ()U t . In this situation, the set of possible
actions depends on the state of the process.
The set of all possible actions is denoted by  .
Sets of possible actions for given states are
defined by:

: 2 .g →  (25)
For this function we assume that its value

()tg S ⊆  for each state must not be an empty
set, hence ()t ta g S∈ . The sequence of actions
of writing and deletion is defined as

() () ()0 1 1 0 1 1, , , T Ta a a a g S g S g S− −= ∈ × × × 

(26)

This sequence can be interpreted as control

of the process of writing of deletion with
a corresponding  trajectory defined by
formulas in (21) and (22), which runs the
process from the initial 0S state (usually
unknown) to the final TS state (current state).
Each transition from the tS to the 1tS + state
resulting from performing the ()t ta g S∈
function is described by the transition function.

7. The transition function

Let us assume that the sets t of physically
possible states of processes at the beginning of
the t -th time period are identical for all time
periods and equal  . Therefore, we look at the
process of writing and deletion in stationary
conditions, which implies, among others,
a constant size of the MD disk, expressed in
clusters. In this case, the transition function is
determined on the Cartesian product of the set of
possible  states and the set of physically
possible actions  :

{ }:F IMPOSSIBLE× → ∪   (27)

Andrzej Chojnacki, Fryderyk Darnowski, A model of the process of writing and deleting file information...

 24

with

() ()
()

1,

0, 1

t t t
t t

t t

S if a g S
F S a

IMPOSSIBLE if a g S

for t T

+ ∈=  ∉

= −

(28)

Let us further assume, following the prior
assumptions, that in the situation where

()t ta g S∉ , such an action is omitted and
the number of time periods reduces by one.
Hence, condition (26) is always met. The values
of the transition function are constructed as
a result of the BFA algorithm and the recording
of this result in the $MFT table. The BFA
algorithm, working as the first for the action of
writing, modifies the content of the disk, that is
sets ()D t and ()U t , and then a modification
of the $MFT table corresponding to these
changes is made. However, for the deletion
operation, only the $MFT table is modified.
This allows an analytical description of
the transition function for any process state.

We assumed that the state TS ∈ is known
and we wanted to obtain information about
the initial 0S state. In a generalized case, this is
not possible as we do not know the sequence a
of actions undertaken. However, we may, based
on the knowledge of the transition function F ,
determine the subset of the  set of possible
states at the beginning of the time period as
a compilation of subsequent inverse images of
the function F . And so, the set of permissible
states at the beginning of the time period
numbered 1T − is as follows:
 () (){ }1 : : ,T TS a g S F S a S− ∈ ∃ ∈ = ⊆   (29)

The set of permissible states at the
beginning of the time period numbered 1t − is
as follows:

() (){ }1 : : ,

.

t tS a g S F S a

for t=1,T-1

− ∈ ∃ ∈ ∈ ⊆    (30)

The above recursive definition (29), (30)

allows us to designate the 0 set, which
incorporates the 0S state that we are interested
in. With additional information about the file
or files we are looking for, we can limit this set
to its subset and analyze it to discover the lost
data.

8. Conclusions

On the basis of the mathematical model
presented, it is possible to construct IT tools in

the form of an appropriate package of programs
for analyzing the existing state of the disk for
information about its past condition. This Finite-
State-Machine approach was proposed by
Gladyshev back in 2004 [5], and even had a real
case implementation with some limited success
[6]. Since then, this area of research was kind-of
abandoned, because of computation complexity
[7]. This method of analysis should be modified,
especially when there are numerous resulting
sets of possible initial disk states. For example,
we can analyze the stream of action as a non-
uniform Poisson stream and limit ourselves to
analyzing the states whose probability of
occurrence is greatest. There also exist other
useful tools for supporting the analysis, e.g.
Markov processes apparatus or control theory
methods with the introduction of example
control costs for subsequent stages of the process
of writing and deletion as costs resulting from
data loss.

Information about actions that took place on
hard drive could be derived from additional
complex analysis of file system metadata.
Analysis of NTFS system file $ObjId presented
in [8] is one such example. In practice,
the specialist often has additional information,
e.g. from the system users to which file was
deleted, when it was deleted and what writing
and deletion operations took place in
the analyzed time. Equipped with such
additional information, the proposed tool should
select one or more areas on the disk where
the file may be found. These designated areas
can then be examined by a specialist either
“manually” or using the methods presented in,
e.g. [1].

The proposed method offers an advantage
in the form of the ability to recover information
about partially overwritten or fragmented files.
It also allows us to link the retrieved information
with the time of their occurrence. Limiting
the search space may allow the specialist to
analyze the indicated areas him/herself, which is
crucial when searching for files with a specific
structure.

9. Bibliography

[1] Darnowski F., Chojnacki A., “Selected
Methods of File Carving and Analysis of
Digital Storage Media in Computer
Forensic”, Przegląd Teleinformatyczny,
T.3(21) Nr 1-2 (39) 2015.

[2] Darnowski F., Chojnacki A., “Writing and
Deleting files on hard drives with NTFS”,

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 19−25 (2019)

 25

Computer Science and Mathematical
Modelling, No. 8, 5–15 (2018).

[3] Ghotge V., Nema P., “Description of the
Cluster Preallocation Algorithm in the
NTFS File System”, Microsoft Product
Support Services White Paper, 2004.

[4] Carrier B., “File System Forensic
Analysis”, Addison Wesley Professional,
New York, 2005.

[5] Gladyshev P., Patel A., “Finite State
Machine Approach to Digital Event
Reconstruction”, Digital Investigation,
Vol. 1, Issue 2, 130–149 (2004).

[6] Gladyshev P., Patel A., “Finite state
machine analysis of a blackmail
investigation”, International Journal of
Digital Evidence, Vol. 4, Issue 1, 1–13
(2005).

[7] Olivier M., “Scientific theory of digital
forensic”, in: Advances in Digital Forensics
XII: 12th IFIP WG 11.9 International
Conference, pp. 3–24, New Delhi,
January 4–6, 2016.

[8] Nordvik R., Toolan F., Axelsson S., “Using
the object ID index as an investigative
approach for NTFS file systems”, Digital
Investigation, Vol. 28, 30–39 (2019).

Model procesu zapisu i kasowania informacji o plikach na dysku
z systemem NTFS

A. CHOJNACKI, F. DARNOWSKI

Celem artykułu jest przedstawienie modelu matematycznego procesu zapisu i kasowania informacji o plikach na
dysku przy wykorzystaniu zawartości pliku systemowego $MFT, czyli w pliku generowanym w systemie plików
NTFS (New Technology File System). Przedstawiony model posługuje się językiem teorii sterowania,
utożsamiając stan systemu ze stanem dysku oraz stanem pliku $MFT, a sterowanie jako podjęcie akcji zapisu lub
kasowania. Założono przy tym deterministyczny charakter procesu oraz jego stacjonarność. Proponuje się, aby
następnie na podstawie funkcji przejścia, po jej uszczegółowieniu, konstruować kolejne przeciwobrazy zbiorów
możliwych wcześniej stanów w kolejnych etapach procesu zapisu lub kasowania. Uzyskane rezultaty są
podstawą opracowywanych implementacji.

Słowa kluczowe: dysk twardy, NTFS, $MFT.

