PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Change in Temperature Conditions of Slovakia to the Reference Period 1961-2010 and their Expected Changes to Time Horizons Years 2035, 2050, 2075 and 2100 under the Conditions of Changing Climate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the paper was to show cognition from the theory of climate change. The map outputs of these changes offer the climate data from basic elements and characteristics of the energy balance in terms of the current state as well as the trends and assumptions of their future changes in Slovakia. For these agroclimatic analyses, 100 climatic stations in Slovakia spread out to cover all agricultural regions, up to 800 m above sea level, have been selected. Our analyses are related to the period of years 1961–2010, when measurements and observations were the most homogeneous. The future trends and map outputs of future climate change were determined with the mathematic-statistical methods to the 2035, 2050, 2075and 2100-year horizons. This study presents the impact of the climate change on the temperature conditions in Slovakia. The temperature changes (average, maximum and minimum temperature) were analysed with forecasts up to year 2100. The forecasts for the 2100-year horizon indicate increasing of the average annual temperature on average by about 2.0°C, maximum temperature on average by about 2.0°C and minimum temperature on average by about 2.5–3°C in comparison to the present.
Rocznik
Strony
232--240
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
  • Department of Biometeorology and Hydrology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Hospodárska 7, 949 76 Nitra, Slovakia
autor
  • Department of Landscape Planning and Land Consolidation, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Hospodárska 7, 949 76 Nitra, Slovakia
  • Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Hospodárska 7, 949 76 Nitra, Slovakia
  • Department of Biometeorology and Hydrology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Hospodárska 7, 949 76 Nitra, Slovakia
autor
  • Department of Biometeorology and Hydrology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Hospodárska 7, 949 76 Nitra, Slovakia
  • Department of Biometeorology and Hydrology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Hospodárska 7, 949 76 Nitra, Slovakia
  • Department of Biometeorology and Hydrology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Hospodárska 7, 949 76 Nitra, Slovakia
  • Department of Biometeorology and Hydrology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Hospodárska 7, 949 76 Nitra, Slovakia
Bibliografia
  • 1. IPCC, Summary for Policymakers, 2018, https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_summary-for-policymakers.pdf.
  • 2. Jing-Hui M. et al. 2016. Analysis of the Temporal and Spatial Distribution of Haze and its Influencing Factors in Shanghai. Polish Journal of Environmental Studies, 25(5), 1965-1974, doi: 10.15244/pjoes/62128.
  • 3. Leitmanova M. et al. 2013. Concept of Information System for Land Consolidation Projects. Acta Horticulturae et Regiotecturae, 16(2), 40-43, doi.org/10.2478/ahr-2013-0010.
  • 4. Li S. et al. 2017. Analysis of the Spatiotemporal Land-Use/Land-Cover Change and its Driving Forces in Fuxian Lake Watershed, 1974 to 2014. Polish Journal of Environmental Studies, 26(2), 671-681. doi: 10.15244/pjoes/65737.
  • 5. Omar O.L. et al. 2015. Hydroclimatic Trends in Areas with High Agricultural Productivity in Northern Mexico. Polish Journal of Environmental Studies, 24(3), 1165-1180, doi: 10.15244/pjoes/31221.
  • 6. Pozníková G. et al. 2018. Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods. Agricultural Water Management, 209( 30 October), 249-263. https://doi.org/10.1016/j. agwat.2018.07.041.
  • 7. Rendeková A. et al. 2019. Effects of invasive plant species on species diversity: implications on ruderal vegetation in Bratislava City, Slovakia, Central Europe. Acta Societatis Botanicorum Poloniae, 88, 3621 (2019).
  • 8. Rukundo E, Dogan A. 2016. Assessment of Climate and Land Use Change Projections and their Impacts on Flooding. Polish Journal of Environmental Studies, 25(6), 2541-2551, doi: 10.15244/pjoes/63781.
  • 9. Sevruk B., Ondrás M., Chvila B. 2009. The WMO precipitation measurement intercomparisons, Atmos. Res., 92, 3, 376–380. https://doi.org/10.1016/j.atmosres.2009.01.016.
  • 10. Ziernicka-Wojtaszek A, Krużel J., 2016. The Diversification of Air Temperature Trends in Poland (1981-2010). Polish Journal of Environmental Studies, 25(5), 2205-2209, doi: 10.15244/pjoes/62636.
  • 11. Ziernicka-Wojtaszek A., 2019. Pluviothermal Regionalization of Poland in Light of Present-Day Climate Change. Polish Journal of Environmental Studies, doi:10.15244/pjoes/99976.
  • 12. Wimmerová M. et al. 2017. Effect of artificially induced drought on growth and productivity of selected crops within field experiment in Bohemian-Moravian highlands. In MendelNet 2017: Proceedings of International PhD Students Conference. Brno: Mendel University in Brno, 169-173. https://mnet.mendelu.cz/mendelnet2017/mnet_2017_full.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6a254ef-6b4f-41f8-be7f-b17564bb7f36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.