Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research aims to compare two microscopic measurement techniques: Confocal and Focus Variation, for the assessment of the entire fracture surface method. The measurements were conducted using the Sensofar S Neox 3D and Alicona InfiniteFocus G4 optical profilometers. Surface parameters were assessed for the entire fracture regions of the 10HNAP structural steel ring V-notched specimen. Fatigue test were performed under combination of bending and torsional moments. Stationary and ergodic random loadings had normal probability distribution and wide-band frequency spectra from 0 to 60 Hz. The obtained results for arithmetic mean heigh (Sa) and root mean square height (Sq) parameters did not show a comprehensible difference between the applied measurement techniques for analysed specimen. Additionally, the process of filling in non-measured (NM) points does not significantly affect the results when compared to the raw data. Thus, both measurement devices and measurement techniques can be employ to the entire fracture method.
Wydawca
Rocznik
Tom
Strony
267--274
Opis fizyczny
Bibliogr. 30 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, Gdańsk 80-233, Poland
- EkoTech Center, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, Gdańsk 80-233, Poland
autor
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, aleja Powstanców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
autor
- Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, Gdańsk 80-233, Poland
- EkoTech Center, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, Gdańsk 80-233, Poland
Bibliografia
- 1. Podulka P, Macek W, Szala M, Kubit A, Das KC, Królczyk G. Evaluation of high-frequency roughness measurement errors for composite and ceramic surfaces after machining. J Manuf Process 2024; 121: 150–71. https://doi.org/10.1016/J.JMAPRO.2024.05.032.
- 2. Krolczyk GM, Krolczyk JB, Maruda RW, Legutko S, Tomaszewski M. Metrological changes in surface morphology of high-strength steels in manufacturing processes. Measurement (Lond) 2016; 88: 176–85. https://doi.org/10.1016/j.measurement.2016.03.055.
- 3. Jiang CP, Masrurotin, Wibisono AT, Macek W, Ramezani M. Enhancing Internal Cooling Channel Design in Inconel 718 Turbine Blades via Laser Powder Bed Fusion: A Comprehensive Review of Surface Topography Enhancements. International Journal of Precision Engineering and Manufacturing 2024 26(2): 487–511. https://doi.org/10.1007/S12541-024-01177-3.
- 4. Kowal M, Szala M. Diagnosis of the microstructural and mechanical properties of over century-old steel railway bridge components. Eng Fail Anal 2020; 110: 104447. https://doi.org/10.1016/J.ENGFAILANAL.2020.104447.
- 5. Deja M, Zieliński D, Agebo SW. Study on the wear characteristics of a 3D printed tool in flat lapping of Al2O3 ceramic materials. Wear 2024; 556–557: 205515. https://doi.org/10.1016/J.WEAR.2024.205515.
- 6. Pawlus P, Reizer R, Grzegorz ·, Królczyk M, Munish, Gupta K. A State of the art on surface texture creation modelling methods in machining. Archives of Computational Methods in Engineering 2025; 1–27. https://doi.org/10.1007/S11831-025-10229-4.
- 7. Romanelli L, Santus C, Macoretta G, Barsanti M, Monelli BD, Senegaglia I, et al. A TCD-based statistical method to assess the impact of surface roughness and pores on the fatigue strength of LPBF Inconel 718 specimens. Int J Fatigue 2025; 194: 108821. https://doi.org/10.1016/J.IJFATIGUE.2025.108821.
- 8. Macek W. Post-failure fracture surface analysis of notched steel specimens after bending-torsion fatigue. Eng Fail Anal 2019; 105: 1154–71. https://doi.org/10.1016/J.ENGFAILANAL.2019.07.056.
- 9. Maleki E, Bagherifard S, Bandini M, Guagliano M. Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities. Addit Manuf 2021; 37: 101619. [https://doi.org/10.1016/J.ADDMA.2020.101619](https://doi.org/10.1016/J.ADDMA.2020.101619).
- 10. Macek W. Fractal analysis of the bending-torsion fatigue fracture of aluminium alloy. Eng Fail Anal 2019; 99: 97–107. https://doi.org/10.1016/j.engfailanal.2019.02.007.
- 11. Kotowski P. Fractal dimension of metallic fracture surface. Int J Fract 2006. https://doi.org/10.1007/s10704-006-8264-x.
- 12. Gryguć A, Behravesh SB, Shaha SK, Jahed H, Wells M, Williams B, et al. Multiaxial cyclic behaviour of extruded and forged AZ80 Mg alloy. Int J Fatigue 2019; 127: 324–37. https://doi.org/10.1016/J.IJFATIGUE.2019.06.015.
- 13. Senin N, Thompson A, Leach RK. Characterisation of the topography of metal additive surface features with different measurement technologies. Meas Sci Technol 2017. https://doi.org/10.1088/1361-6501/aa7ce2.
- 14. Whitehouse DJ. Surface metrology. Meas Sci Technol 1997; 8: 955. https://doi.org/10.1088/0957-0233/8/9/002.
- 15. Leksycki K, Królczyk JB. Comparative assessment of the surface topography for different optical profilometry techniques after dry turning of Ti6Al4V titanium alloy. Measurement 2021; 169: 108378. https://doi.org/10.1016/J.MEASUREMENT.2020.108378.
- 16. Macek W, Branco R, Costa JD, Pereira C. Strain sequence effect on fatigue life and fracture surface topography of 7075-T651 aluminium alloy. Mechanics of Materials 2021; 160: 103972. https://doi.org/10.1016/j.mechmat.2021.103972.
- 17. Kowalczyk J, Madej M, Piotrowska K, Radoń-Kobus K. The Impact of a Movement Type on Tribological Properties of AlTiN Coating Deposited on HS6-5-2C Steel. Advances in Science and Technology Research Journal 2024; 18: 305–16.https://doi.org/10.12913/22998624/185164.
- 18. Niemczewska-Wójcik M, Madej M, Kowalczyk J, Piotrowska K. A comparative study of the surface topography in dry and wet turning using the confocal and interferometric modes. Measurement 2022; 204: 112144. https://doi.org/10.1016/J.MEASUREMENT.2022.112144.
- 19. Ruzova ТА, Haddadi B. Surface roughness and its measurement methods – analytical review. Results in Surfaces and Interfaces 2025; 100441. https://doi.org/10.1016/J.RSURFI.2025.100441.
- 20. Podulka P, Macek W, Rozumek D, Żak K, Branco R. Topography measurement methods evaluation for entire bending-fatigued fracture surfaces of specimens obtained by explosive welding. Measurement 2024; 224: 113853. https://doi.org/10.1016/J.MEASUREMENT.2023.113853.
- 21. Macek W, Sampath D, Pejkowski Ł, Żak K. A brief note on monotonic and fatigue fracture events investigation of thin-walled tubular austenitic steel specimens via fracture surface topography analysis (FRASTA). Eng Fail Anal 2022; 134: 106048. https://doi.org/10.1016/J.ENGFAILANAL.2022.106048.
- 22. Cao YG, Zhang SH, Tanaka K. Calculation method for maximum low-cycle fatigue loads using FRASTA reconstruction data. Int J Fract 2013. https://doi.org/10.1007/s10704-013-9862-z.
- 23. Podulka P, Macek W, Zima B, Kopec M, Branco R, Achtelik H. Fracture surface topography measurements analysis of low-alloyed corrosion resistant steel after bending-torsion fatigue tests. Precis Eng 2024; 89: 296–316. https://doi.org/10.1016/J.PRECISIONENG.2024.07.002.
- 24. International Organisation of Standardization. ISO 25178. Geometric Product Specifications (GPS) – Surface Texture: Areal 2010.
- 25. Macek W, Campagnolo A. Correlation between Fractal Dimension and Areal Surface Parameters for Fracture Analysis after Bending-Torsion Fatigue. Metals 2021; 11: 1790. https://doi.org/10.3390/MET11111790.
- 26. Mandelbrot BB, Passoja DannE, Paullay AJ. Fractal character of fracture surfaces of metals. Nature 1984; 308: 721–2. https://doi.org/10.1038/308721a0.
- 27. Macek W, Rozumek D, Królczyk GM. Surface topography analysis based on fatigue fractures obtained with bending of the 2017A-T4 alloy. Measurement (Lond) 2020; 152: 107347. https://doi.org/10.1016/j.measurement.2019.107347.
- 28. Queffelec A. An important comparison of software for Scale Sensitive Fractal Analysis: are ancient and new results compatible? Peer Community In Archaeology 2023. https://doi.org/10.24072/PCI.ARCHAEO.100024.
- 29. Macek W. The impact of surface slope and calculation resolution on the fractal dimension for fractures of steels after bending-torsion fatigue. Surf Topogr 2022; 10: 015030. https://doi.org/10.1088/2051-672X/AC58AE.
- 30. Florindo JB, Bruno OM. Texture analysis by multi-resolution fractal descriptors. Expert Syst Appl 2013; 40: 4022–8. https://doi.org/10.1016/J.ESWA.2013.01.007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a69e92c2-fc22-4c95-8248-bc2a83bfa7c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.