Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to determine the effect of three different ionic liquids (ILs): 1-butyl-1-methylpyrrolidynium hexafluorophosphate [Pyrrol][PF6], 1-butyl-1-methylpiperydynium hexafluorophosphate [Piper][PF6] and 1-butyl-4-methylopirydynium hexafluorophosphate [Piryd][PF6] on phosphatase activities in soil. The pot experiment was carried out on loamy sand (Corg content 9.0 g/kg) with spring barley as a tested plant. The ILs was used at the dosages of 0, 1, 10, 50, 100, 400, 700 and 1000 mg/kg dry matter (DM). On day 14, soil samples were collected and activities of alkaline phosphomonoesterase, acid phosphomonoesterase, phosphotriesterase and inorganic pyrophosphatase were determined. Based on the analysis of the effect measure η2 by variance analysis – ANOVA – the percentage shares of all variable factors affecting the activity of phosphatases were also defined. Obtained results showed that the application of different dosages of all ILs caused mainly non-significant changes in phosphatase activity. Changes in activity of phosphatases were often not dependent on IL dosages. The most sensitive for ILs were both phosphomonoesterases. The type of ILs had the highest percentage participation in formation of acid phosphomonoesterase activity, while dosages of ILs affected mainly alkaline phosphomonoesterase and phosphotriesterase activities.
Czasopismo
Rocznik
Tom
Strony
86--91
Opis fizyczny
Bibliogr. 23 poz., tab., rys.
Twórcy
autor
- Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology, Słowackiego 17, 71-434 Szczecin, Poland
autor
- Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology, Słowackiego 17, 71-434 Szczecin, Poland
autor
- Department of Biochemistry and Ecotoxicology, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland
autor
- Department of Biochemistry and Ecotoxicology, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
- 1. Biczak R. 2016. Quaternary ammonium salts with tetrafluoroborate anion: Phytotoxicity and oxidative stress in terrestrial plants. J. Hazard. Mat. 304, 173–185.
- 2. Biczak R., Pawłowska B., Białczewski R., Rychter P. 2014. The role of the anion in the toxicity of imidazolium ionic liquids. J. Hazard. Mat. 274, 181–191.
- 3. Biczak R., Pawłowska B., Telesiński A., Ciesielski W. 2016a. The effect of the number of alkyl substituents on imidazolium ionic liquids phytotoxicity and oxidative stress in spring barley and common radish seedlings. Chemosphere 165, 519–528.
- 4. Biczak R., Telesiński A., Pawłowska B. 2016b. Oxidative stress in spring barley and common radish exposed to quaternary ammonium salts with hexafluorophosphate anion. Plant Physiol. Biochem. 107, 248–256.
- 5. Bielińska E.J., Baranowska E., Jędruch M., Gostkowska K. 2005. Ocena stanu środowiska glebowego ogrodów działkowych z terenów o różnym oddziaływaniu antropopresji poprzez badanie aktywności fosfataz [Appraisal of allotment soil environment from areas under the varying influence of anthropopressure through analysis of phosphatase activity]. Inż. Ekolog. 13, 26–28.
- 6. Bielińska, E.J., Mocek-Płóciniak, A. 2010. Impact of ecochemical soil conditions on selected heavy metals content in garden allotment vegetables. Pol. J. Environ. Stud. 19(5), 895–900.
- 7. Borowiecki P., Bretner M., Plenkiewicz J. 2015. Ciecze jonowe oraz obszary ich zastosowań w przemyśle chemicznym [Ionic liquids and potential areas of their applications in chemical industry]. Wiad. Chem. 69(3–4), 271–296.
- 8. Docherty K.M., Kulpa C.F.Jr. 2005. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 7, 185–189.
- 9. Dong M., Zhu L., Zhu S., Wang J., Wang J., Xie H., Du Z. 2013. Toxic effects of 1-decyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers. Chemosphere 91, 1107–1112.
- 10. Griffiths B.S., Philippot L. 2013. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37(2), 112–129.
- 11. Kaczyńska G., Borowik A., Wyszkowska J. 2015. Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water Air Soil Pollut. 226(11), 372.
- 12. Li X., Luo Y., Yun M., Wang J., Wang J. 2010. Effects of 1-methyl-3-octylimidazolium bromide on the anti-oxidant system of earthworm. Chemosphere 78, 853–858.
- 13. Li N., Du W., Huang Z., Zhao W., Wang S., 2013. Effect of imidazolium ionic liquids on the hydrolytic activity of lipase. Chin. J. Catal. 34, 769–780.
- 14. Liu T., Guo Y., Wang J., Wang J., Zhu L., Zhang J., Zhang C. 2015. Assessing toxic effects of [Omim]Cl and [Omim]BF4 in zebrafish adults using a biomarker approach. Environ. Sci. Pollut. Res. 23, 7360–7368.
- 15. Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655–670.
- 16. Nannipieri P., Giagnoni L., Landi L., Renella G. 2011. Role of phosphatase enzymes in soil. In: Bünemann E.K., Oberson A., Frossard E. (Eds.), Phosphorus in action. Springer-Verlag, Berlin, Heidelberg, 215–243.
- 17. Orwin K.H., Wardle D.A. 2004. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbance. Soil Biol. Biochem. 36, 1907–1912.
- 18. Parelho C., Rodrigues A.S., Barreto M.C., Ferreira N.G.C., Garcia P. 2016. Assessing microbial activities in metal contaminated agricultural volcanic soils – an integrative approach. Ecotoxicol. Environ. Saf. 129, 242–249.
- 19. Romero A., Santos A., Tojo J. Rodríquez A. 2008. Toxicity and biodegradability of imidazolium ionic liquids. J. Hazard. Mater. 151, 268–273.
- 20. Sun X., Zhu L., Wang J., Wang J., Su J., Liu T., Zhang C., Gao C., Shao Y. 2017. Toxic effects of ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate on soil enzyme activity and soil microbial community diversity. Ecotox. Environ. Saf. 135, 201–208.
- 21. Telesiński 2012. Zmiany parametrów biochemicz-nych i tok- sykologicznych gleb pod wpływem 1-alkilo-3-metylo-imidazoliowych cieczy jonowych [Change of biochemical and toxicological parameters of soils due to 1-alkyl-3-methylimidazolium ionic liqiuds]. Wyd. Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie, Szczecin.
- 22. Telesiński A., Sułkowska N. 2016. Dynamika zanikania 1-alkilo-3-metyloimidazoliowych cieczy jonowych w aspekcie ich oddziaływania na aktywność oksydazy o-difenolowej w glebie [Dissipation dynamic of 1-alkyl-3-methylimidazolium ionic liquids and their effect on o-diphenol oxidase activity in soil]. Chem. Environ. Biotechnol. 19, 87–92.
- 23. Wang J.B., Chen Z.H., Chen L.J., Zhu A.N., Wu Z.J. 2011. Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input amounts. Plant Soil Environ. 57, 251–257.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6979ddb-eb2c-4908-844f-0c14e471af43