Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article provides results of the microstructure examinations and mechanical properties (hardness and microhardness tests) of the welded joint T91 steel taken from the live steam pipeline. Examined joint has been exploited for about 45 000 hours in a temperature of 535°C and the steam pressure equals to 13.5 MPa. Examined joint was made as a double bead by the additional materials with a different chemical composition. It was proved that the joint was characterized by a differential microstructure on the cross-section of the weld. Moreover, decarburized zone in the lower alloyed material and carbides zone in the higher alloyed material were revealed in the weld line and on the boundary penetration of beads. Furthermore, it was shown that the main mechanism of a joint degradation is a privileged precipitation of carbides on the grain boundaries, and an increase of their size.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
237--242
Opis fizyczny
Bibliogr. 20 poz., fot., rys., tab.
Twórcy
autor
- Czestochowa University of Technology, Department of Materials Engineering, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
autor
- Czestochowa University of Technology, Department of Materials Engineering, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
autor
- Czestochowa University of Technology, Department of Materials Engineering, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
autor
- Czestochowa University of Technology, Department of Materials Engineering, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
- [1] F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ Inter. 41 (2001), DOI: 10.2355/isijinternational.41.612.
- [2] G. Golański, A. Zielińska-Lipiec, A. Zieliński, M. Sroka, Effect of Long-Term Service on Microstructure and Mechanical Properties of Martensitic 9%Cr Steel, JMEP 26 (2017), DOI: 10.1007/s11665-017-2556-3.
- [3] G. Golański, A. Zielińska-Lipiec, S. Mroziński, C. Kolan, Microstructural evolution of aged heat-resistant cast steel following strain controlled fatigue, Mater. Sc. Eng. A627 (2015), DOI: 10.1016/j.msea.2014.12.120.
- [4] The T91/P91 book, Vallourec&Mannesmann Tubes 2002 (2nd edition).
- [5] M. Łomozik, A. Zielińska-Lipiec, Microscopic analysis of the influence of multiple thermal cycles on simulated HAZ toughnessin P91 steel, Arch. Metall. Mater. 53, 4 (2008).
- [6] M. Łomozik, M. Zeman, R. Jachym, Cracking of welded joints made of steel X10CrMoVNb9-1 (T91) - case study, Kovove Mater. 50 (2012), DOI: 10.4149/km_2012_4_285.
- [7] J. Dobrzański, New-generation creep-resistant martensitic steel containing 9-12%Cr for elements of steam superheater of boilers operating at supercritical parameters, Transactions of the IMŻ 4 (2011).
- [8] A. Zieliński, J. Dobrzański, H. Purzyńska, G. Golański, Changes in properties and microstructure of high-chromium 9-12%Cr steels due to long-term exposure at elevated temperature, Arch. Metall. Mater. 61, 2 (2016), DOI: 10.1515/amm-2016-0163.
- [9] PN-EN 1043-1. Destructive tests on welds in metallic materials. Hardness testing. Hardness test on arc welded joints.
- [10] PN-EN ISO 6507-1. Metallic materials - Vickers hardness test - Part 1: Test method.
- [11] G. Golański, C. Kolan, J. Jasak, Degradation of the Microstructure and Mechanical Properties of High-Chromium Steels Used in the Power Industry, Creep 2017, DOI: 10.5772/intechopen.70552.
- [12] PN-EN ISO 643. Steels - Micrographic determination of the apparent grain size.
- [13] PN-EN 10222-2: 2002. Steel forgings for pressure purposes. Ferritic and martensitic steels with specified elevated temperatures properties.
- [14] E. Tasak, A. Ziewiec, A. Brzeziak, Prognozowanie zmian struktury i własności w czasie obróbki cieplnej oraz eksploatacji połączeń różnorodnych, Przegląd Spawalnictwa 8-10 (2002).
- [15] J. Brózda, M. Łomozik, M. Zeman, Welding of P91 steel to that of another grades design for operation at elevated temperatures, Biuletyn Instytutu Spawalnictwa 5 (1997).
- [16] L. Yajiang, W. Juan, Z. Bing, F. Tao, XRD and TEM analysis of microstructure in the welding of 9Cr-1Mo-V-Nb heat - resisting steel, Bull. Mater. Sci. 25, 3 (2002), DOI: https://doi.org/10.1007/BF02711156.
- [17] D. Meng, F. Lu, H. Cui, Y. Ding, Investigation on creep behavior of welded joint of advanced 9%Cr steels, J. Mater. Research, 30 (2015), DOI: https://doi.org/10.1557/jmr.2014.366.
- [18] C. Pandey, A. Giri, M. M. Mahapatra, P. Kumar, Characterization of microstructure of HAZ in as-welded and service condition of P91 pipe weldments, Met. Mater. Int. 23 (2017), DOI: 10.1007/s12540-017-6394-5.
- [19] Y. Gong, Z.-G. Yang, F. Y. Yang, Heat strength evaluation and microstructures observation of the welded joints of one China-made T91 steel, JMEPEG, 21 (2012), DOI.: 10.1007/s11667-011-0048-4.
- [20] Y. Liu, S. Tsukamoto, K. Sawada, M. Tabuchi, F. Abe, Precipitation behavior in the heat-affected zone of boron-added 9Cr-3W-3Co steel during post-weld heat treatment and creep deformation, Metall Mater. Tran. 46A (2015), DOI: 10.1007/s11661-015-2802-y.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a696f1b3-1377-4dfe-bdc0-0c9874e312b7