PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure characterization of ultrafine grained Cu alloys processed by methods with cyclic scheme of deformation

Autorzy
Identyfikatory
Warianty tytułu
PL
Charakterystyka mikrostruktury ultradrobnoziarnistych stopów miedzi otrzymywanych metodami cyklicznej deformacji
Języki publikacji
EN
Abstrakty
EN
COT (compression with oscillatory torsion) is a simple process that has the ability to deform bulk metallic samples. Performed investigations show that this method of deformation leads to grain refinement of Cu–Cr and Cu–Fe alloys. The grain size obtained via the dislocation subdivision mechanism associated with generation of non-equilibrum grain boundaries is in the UFG range. Large fraction of grain boundaries have low angles of misorientation. The limitation of the grain refinement and creation of low angles boundaries can be attributed to the extensive dynamic recovery. However, recrystallization process and deformation twinning plays a crucial role in grain refinement resulting in grain refinement to the nanoscale. The present overview shows that many structural elements accompanying formation UGF structure influence on understanding of the microstructure–properties relationship in these materials.
PL
Prezentowana praca ma na celu scharakteryzowanie zmian mikrostruktury zachodzących w stopach miedzi CuCr0,6 (C18200) i CuFe2 (C19400) podczas rozdrabniania ziarna z wykorzystaniem metod RCMR i COT. Stopy CuCr0,6 i CuFe2 należą do grupy stopów umacnianych wydzieleniowo. W związku z tym w pracy przedyskutowano również wpływ struktury wyjściowej (stan materiału po przesycaniu oraz starzeniu) na kształtowanie rozdrobnionej struktury. Przedstawione problemy mogą być pomocne w pokazaniu pełnego obrazu procesów strukturalnych towarzyszących kształtowaniu się ultradrobnoziarnistej struktury stopów miedzi podczas cyklicznego odkształcania SPD.
Rocznik
Strony
46--55
Opis fizyczny
Bibliogr. 68 poz., fig.
Twórcy
autor
  • Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, Institute of Materials Engineering, Katowice
Bibliografia
  • [1] Alaxandrov I. V., Valiev R. Z.: Developing of SPD processing and enhanced properties in bulk nanostructured materials. Scripta Mater. 44 (2001) 1605÷1608.
  • [2] Prangnell P. B., Boven J. R., Gholinia A.: The formation of submicron and nanocrystalline grain structures by severe deformation. Science of metastable and nanocrystalline alloys. Structure, properties and modeling, Proc 22 Risø International Symposium on Materials Science DK: Risø, (2001)105÷126.
  • [3] Sabirov I., Enikeev N. A., Murashkin M. Yu., Valiev R. Z.: Nanostructures in materials subjected to severe plastic deformation. Bulk Nanostructured Materials with Multifunctional Properties, Springer Briefs in Materials book, series BRIEFSMATERIALS (2015) 11÷26.
  • [4] Valiev R. Z.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3 (2004) 511÷516.
  • [5] Wang Y. M., Ma E.: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52 (2004) 1699÷1709.
  • [6] Valiev R. Z., Islamgaliev R. K., Alexandrov I. V.: Bulk nanostructured materials from severe plastic deformation. Prog. in Mater. Sci. 45 (2000) 103÷189.
  • [7] Sabirov I., Murashkin M. Y., Valiev R. Z.: Nanostructured aluminum alloys produced by severe plastic deformation. New horizons in development. Mater. Sci. Eng. A 560 (2013) 1÷24.
  • [8] Vinogradov A., Ishida T., Kitagawa K., Kopylov V. I.: Effect of strain path on structure and mechanical behaviour of ultra-fine grain Cu–Cr alloy produced by equal-channel angular pressing. Acta Mater. 53 (2005) 2181÷2192.
  • [9] Vinogradov A., Ishida T., Kitagawa K., Kopylov V. I.: Effect of strain path on structure an mechanical behaviour of ultra-fine grain Cu–Cr alloy produced by equal-channel angular pressing. Acta Mater. 53 (2005) 2181÷2192.
  • [10] Bazarnik P., Romelczyk B., Huang Y., Lewandowska M., Langdon T. G.: Effect of applied pressure on microstructure development and homogeneity in an aluminum alloy processed by high-pressure torsion. Journal of Alloys and Compounds 688 (2016) 736÷745.
  • [11] Gholina A., Prangnell P. B., Markushev M. V.: The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE. Acta Mater. 48 (2000) 1115÷1130.
  • [12] Huang J., Xu Z.: Evolution mechanism of grain refinement based on dynamic recrystallization in multiaxially forged austenite. Materials Letters 60 (2006) 1854÷1858.
  • [13] Bazarnik P., Romelczyk B., Kulczyk M., Lewandowska M.: The strength and ductility of 5483 aluminium Allom processed by various SPD methods. Materials Science Forum 765 (2013)765÷423.
  • [14] Bazarnik P., Lewandowska M., Andrzejczuk M., Kurzydłowski K. J.: The strength and thermal stability of Al–5Mg alloys nano-engineered using methods of metal forming. Mater. Sci. and Eng. A 556 (2012) 134÷139.
  • [15] Etter A. L., Baudin T., Rey C., Penelle R.: Microstructural and textural characterization of copper processed by ECAE. Mater. Char. 56 (2006) 19÷25.
  • [16] Islamgaliev R. K., Sitdikov V. D., Nesterov K. M., Pankratov D. L.: Structure and crystallographic texture in the Cu–Cr–Ag alloy subjected to severe plastic deformation. Rev. Adv. Mater. Sci. 39 (2014) 61÷68.
  • [17] Orlov D., Todaka Y., Umemoto M., Tsuji N.: Role of strain reversal in grain refinement by severe plastic deformation. Mater. Sci. and Eng. A 499 (2009) 427÷433.
  • [18] Cao W. Q., Gu C. F., Pereloma E. V., Davies C. H. J.: Stored energy, vacancies and thermal stability of ultra-fine grained copper. Materials Science and Engineering A 492 (2008) 74÷79.
  • [19] Richert M.: Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression. Mater. Sci. Eng. A 355 (2003) 180÷185.
  • [20] Bochniak W., Korbel A.: KOBO-type forming: forging of metals under complex conditions of the process. J. Mater. Process. Techn. 134 (2003)120÷134.
  • [21] Bochniak W., Korbel A.: Plastic flow of aluminium extruded, under complex conditions. Mater. Sci. Technol. 16 (2000) 664÷674.
  • [22] Kowalewski Z. L., Szymczak T., Maciejewski J.: Material effects during monotonic-cyclic loading. Int. J. Solid and Structures. 3–4 (2014) 740÷753.
  • [23] Mróz Z., Kowalczyk-Gajewska K., Maciejewski J., Pęcherski R. B.: Tensile or compressive plastic deformation of cylinders assisted by cyclic torsion. Arch. Mech. 6 (2006) 497÷527.
  • [24] Szymczak T., Kowalewski Z. L..: Variations of mechanical parameters and strain energy dissipated during tension-torsion loading. Arch. Metall. Mater. 1 (2012) 193÷197.
  • [25] Szymczak T., Kowalewski Z. L.: Analysis of tensile force variation due to application of cyclic torsion for a range of frequency levels. 39th Solid Mechanics Conference Zakopane, Poland, September 1st–5th (2014) P049.
  • [26] Sun P. L., Kao P. W., Chang C. P.: Microstructural characteristics of ultrafine- grained aluminium produced by equal channel angular extrusion. Scr. Mater. 47 (2002) 377÷381.
  • [27] Kong L. X., Hodgson P. D.: Material properties under drawing and extrusion with cyclic torsion. Mater. Sci. Eng. A 308 (2001) 209÷215.
  • [28] Pawlicki J., Grosman F.: Analysis of power-energy effect for processes with forced deformation path. Arch. Civ. Mech. Eng. 3 (2004) 45÷55.
  • [29] Patent No. PL 203220 B1.
  • [30] Cyganek Z., Rodak K., Grosman F.: Influence of rolling process with induced strain path on aluminium structure and mechanical properties. Arch. Civ. Mech. Eng. 13 (2013) 7÷13.
  • [31] Rodak K., Pawlicki J.: Microstructure characterization of Cu processed by compression with oscillatory torsion. Mater. Char. 94 (2014) 37÷45.
  • [32] Rodak K., Pawlicki J.: Effect of compression with oscillatory torsion processing on structure and properties of Cu. Journal of Mater. Sci. Tech. 11 (2011) 1083÷1088.
  • [33] Urbańczyk-Gucwa A., Rodak K., Płachta A., Sobota J., Rdzawski Z.: Characteristic structure of Cu–0.8Cr alloy using SPD deformation by rolling with cyclic movement of rolls method. Key Eng. Mater. 682 (2016) 3÷9.
  • [34] Rdzawski Z., Stobrawa J., Głuchowski W., Sobota J.: Mechanism and kinetics of precipitation process in selected copper alloys. Archives of Metallurgy and Materials 2 (2014) 649÷658.
  • [35] Dobatkin S. V., Gubicza J., Shangina D. V., Bochvar N. R., Tabachkova N. Y.: High strength and good electrical conductivity in Cu–Cr alloys processed by severe plastic deformation. Mater. Letter. 153 (2015) 5÷9.
  • [36] Islamgaliev R. K., Nesterov K. M., Bourgon J., Champion Y., Valiev R. Z.: Nanostructured Cu–Cr alloy with high strength and electrical conductivity. Jour. of App. Phys. 115 (2014) 194301÷194304.
  • [37] Zhang Y., Volinsky A. A., Tran H. T., Chai Z., Liu P., Tian B., Liu Y.: Aging behavior and precipitates analysis of the Cu–Cr–Zr–Ce alloy. Mater. Sci. and Eng. A650 (2016) 248÷253.
  • [38] Wei K. X., Wei W., Wang F., Du Q. B., Alexandrov I. V., Hu J.: Microstructure, mechanical properties and electrical conductivity of industrial Cu– 0.5%Cr alloy processed by severe plastic deformation. Mater. Sci. Eng. A 528 (2011) 1478÷1484.
  • [39] Ungar T., Balogh L., Zhu Y. T., Horita Z., Xu Z., Langdon T. G.: Using X-ray microdifraction to determine grain sizes at selected positions in disks processed by high pressure torsion. Mater. Sci. Eng. A 444 (2007) 153.
  • [40] Kaibyshev R. O., Mazurina I. A., Gromov D. A.: Mechanisms of grain refinement in aluminium alloys in the process of severe plastic deformation. Metal Science and Heat Treatment. 48 (2006) 57÷62.
  • [41] Sauvage X., Wilde G., Divinski S. D., Horita Z., Valiev R. Z.: Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. and Eng. A 540 (2012) 1÷12.
  • [42] Kaibyshev R. O., Mazurina I. A., Gromov D. A.: Mechanisms of grain refinement in aluminium alloys in the process of severe plastic deformation. Metal Sci. Heat Treat. 48 (2006) 57÷62.
  • [43] Rodak K., Molak R. M., Pakieła Z.: Structure and properties of copper after large strain deformation. Physica Status Solidi C-Current Topics in Solid state Physics 5 (2010) 1351÷1354.
  • [44] Qu S., An X. H., Yang H. J., Huang C. X., Yang G., Zang Q. S., Wang Z. G., Wu S. D., Zhang Z. F.: Microstructure evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 57 (2009) 1586÷1601.
  • [45] Guo N., Song B., Yu H., Xin R., Wang B., Liu T.: Enhancing tensile strength of Cu by introducing gradient microstructures via a simple torsion deformation. Mater. and Des. 90 (2016) 545÷550.
  • [46] Alawadhi M. Y., Sabbaghianrad S., Huang Y., Langdon T. G.: Direct influence of recovery behaviour on mechanical properties in oxygen-free copper processed using different techniques: HPT and ECAP. Journal of Materials Research and Technology 256 (2017) 2÷9.
  • [47] He W., Yu Y., Wang E., Sun H., Hu L., Chen H.: Microstructure and properties of cold drawn and annealed submicron crystalline Cu–5% Cr alloy. Trans. of Nonferrous Materials Society of China. 19 (2009) 93÷98.
  • [48] Kommel I., Pokatilov A.: Electrical conductivity and mechanical properties of Cu–0.7 wt % Cr and Cu–1.0 wt % Cr alloys processed by severe plastic deformation. IOP Conf. Series: Mater. Sci. Eng. 63 (2014) 012÷169.
  • [49] Rodak K., Radwański K.: Influence of precipitates on the grain refinement in CuFe2 alloy processed by rolling with cyclic movement of rolls. Materials and Design 110 (2016) 255÷265.
  • [50] Borhani E., Jafarian H.: Effect of pre-existing nano sized precipitates on microstructure and mechanical property of Al–0.2 wt % Sc highly deformed by ARB process. J. Ult. Grain. Nanostr. Mater. 47 (2014) 1÷7.
  • [51] Cao H., Min J. Y., Wu S. D., Xian A. P., Shang J. K.: Pinning of grain boundaries by second phase particles in equal-channel angularly pressed Cu–Fe–P alloy. Mater. Sci. Eng. A 431 (2006) 86÷91.
  • [52] Gleiter H.: Nanostructured materials. Basic concepts and microstructure. Acta Mater. 48 (2000) 1÷29.
  • [53] Tucker G. J., McDowell D. L.: Non-equilibrium grain boundary structure and inelastic deformation using atomistic simulations. Int. J. Plast. 6 (2011) 841÷857.
  • [54] Valiev R. Z.: A paradox of severe plastic deformation in metals. Doklady Physics 24 (2009) 139÷142.
  • [55] Chang C. P.: Deformation induced grain boundaries in commercially pure aluminium. Acta Mater. 48 (2000) 3377÷3385.
  • [56] Ku J., Wang C. T., Shan D., Guo B., Langdon T. G.: Evidence for an early softening behavior in pure copper processed by high-pressure torsion. J. Mater. Sci. 51 (2015) 1923÷1930.
  • [57] Kawasaki M., Ahn B., Langdon T. G.: Effect of strain reversal on the processing of high-purity aluminum by high-pressure torsion J. Mater. Sci. 45 (2010) 4583÷4593.
  • [58] Zhao Y. H., Bingert J. F., Zhu Y. T., Liao X. Z., Valiev R. Z., Horita Z., Langdon T. G., Zhou Y. Z., Laverina.: Applied Phys. Letters 92 (2008) 081903-3.
  • [59] Eizadjou M.: Microstructure and mechanical properties of ultrafine grains (UFGs) aluminum strips produced by ARB process. Journal of Alloys and Compounds 474 (2009) 406÷415.
  • [60] Wang G., Wu S., Zuo L., Esling C., Wang Z., Li G.: Microstructure, texture, grain boundaries in recrystallization regions in pure Cu ECAE samples. Mater. Sci.Eng. A 346 (2003) 83÷90.
  • [61] Zhu Y. T., Liao X. Z., Wu X. L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57 (2012) 1÷62.
  • [62] Huang C. X., Wang K., Wu S. D., Zhang Z. F., Li G. Y., Li S. X.: Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 54 (2006) 655÷665.
  • [63] Zhao Y., Bingert J. F., Liao X., Cui B., Han K., Sergueeva A. V., Mukherjee A. K., Valiev R. Z. Langdon T. G., Zhu Y. T.: Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18 (2006) 2949.
  • [64] Hughes D. A.: Microstructure evolution, slip patterns and flow stress. Mater. Sci. Eng. A 319 (2001) 46÷54.
  • [65] Sakharova N. A., Fernandes J. V.: Strain path change effect on dislocation microstructure of multicrystalline copper sheets. Materials chemistry and Physics 98 (2006) 44÷50.
  • [66] Sakai T., Belyakov A., Kaibyshev R., John H. M., Jonas J.: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science 60 (2014) 130÷207.
  • [67] Korbel A., Bochniak W.: Refinement and control of the metal structure elements by plastic deformation. Scripta Mater. 51 (2004) 755÷759.
  • [68] Kawasaki M., Lee H. J., Jang. J., Langdon T. G.: Strengthening of metals through severe plastic deformation. Rev. Adv. Mater. Sci. 48 (2017) 13÷24.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a695d337-5972-45c1-a752-4fc19ab05f24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.