PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composite anti-disturbance switched H2 control design for switched systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article addresses the challenge of integrated switched H2 control with disturbance rejection capabilities for switched systems, particularly when external disturbances are present. A novel anti-disturbance switched H2 control strategy is formulated, leveraging estimated disturbance values. The formulation is given in Linear Matrix Inequalities (LMIs), establishing sufficient conditions to ensure H2 performance while maintaining closed-loop stability. To validate the effectiveness of the proposed methodology, it is applied to a practical aero-engine model. Through simulations, it is demonstrated that the closed-loop aero-engine model exhibits remarkable transient performance even in the face of external disturbances. These results underscore the efficacy of the developed approach in enhancing the robustness and perfor-mance of switched systems subjected to disturbances. The integration of anti-disturbance capabilities within the H2 control framework offers a promising avenue for addressing real-world control challenges, particularly in systems characterized by switching dynamics and external perturbations.
Rocznik
Strony
126--135
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
  • Engineering and Natural sciences, Electrical-Electronics Engineering, Uşak University, Uşak, Turkey
autor
  • Engineering, Electrical-Electronics Engineering, Artvin Çoruh University, Artvin, Turkey
Bibliografia
  • 1. Wei X, Guo L. Composite disturbance‐observer‐based control and 𝐻∞ control for complex continuous models. International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal. 2010; 20(1): 106-118.
  • 2. Yao X, Guo L. Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer. Automatica. 2013; 49(8): 2538-2545.
  • 3. Sun H, Hou L, Zong G, et al. Composite anti‐disturbance attitude and vibration control for flexible spacecraft. IET Control Theory & Applications. 2017; 11(14): 2383-2390.
  • 4. Li Y, Chen M, Ge SS, et al. Anti-disturbance control for attitude and altitude systems of the helicopter under random disturbances. Aerospace Science and Technology. 2020; 96: 105561.
  • 5. Li T, Yang H, Tian J, et al. Improved disturbance rejection control based on 𝐻∞ synthesis and equivalent-input-disturbance for aircraft longitudinal autopilot design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2018; 233(9): 3323-3335.
  • 6. Gao F, Wu M, She J, et al. Disturbance rejection in nonlinear systems based on equivalent-input-disturbance approach. Applied Mathematics and Computation. 2016; 282: 244-253.
  • 7. Li T, Zhang S, Yang H, et al. Robust missile longitudinal autopilot design based on equivalent-input-disturbance and generalized extended state observer approach. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2016; 229(6): 1025-1042.
  • 8. Aboudonia A, Rashad R, El-Badawy A. Composite hierarchical anti-disturbance control of a quadrotor UAV in the presence of matched and mismatched disturbances. Journal of Intelligent & Robotic Systems. 2018; 90(1): 201-216.
  • 9. Zengbo L, Yukai Z, JianzhongnQ. Composite anti-disturbance position and attitude control for spacecraft with parametric uncertainty and flexible vibration. Chinese Journal of Aeronautics. 2022; 35(12): 242-252.
  • 10. Liu L, Chen M, Li T, et al. Composite Anti-Disturbance Reference Model 𝐿2−𝐿∞ Control for Helicopter Slung Load System. Journal of Intelligent & Robotic Systems. 2021; 102(1): 1-21.
  • 11. Cao S, Guo L, Ding Z. Event‐triggered anti‐disturbance attitude control for rigid spacecrafts with multiple disturbances. International Journal of Robust and Nonlinear Control. 2021; 31(2): 344-357.
  • 12. Yao X, Wen X. Composite hierarchical hybrid anti-disturbance control for Markovian jump systems with event-triggered disturbance. Sys-tems & Control Letters. 2024;185:105734.
  • 13. Sakthivel R, Elayabharath VT, Satheesh T, et al.Design of anti-dis-turbance reliable control for fuzzy networked control systems with multiple disturbances. International Journal of Fuzzy Systems. 2024; 26(1): 105-120.
  • 14. Sun H, Liu Y, Jiao T, et al. Distributed extended state observer design and dual-side dynamic event-triggered output feedback anti-disturb-ance control for nonlinear interconnected systems with quantization. Journal of the Franklin Institute. 2024; 106847.
  • 15. Lin H, Antsaklis PJ. Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Transactions on Automatic control. 2009; 54(2): 308-322.
  • 16. Liberzon D, Morse AS. Basic problems in stability and design of switched systems. IEEE control systems magazine. 1999; 19(5): 59-70.
  • 17. Geromel JC, Colaneri P. Stability and stabilization of continuous-time switched linear systems. SIAM Journal on Control and Optimization. 2006; 45(5): 1915-1930.
  • 18. Allerhand LI, Shaked U. Robust control of linear systems via switching. IEEE Transactions on Automatic Control. 2012; 58(2): 506-512.
  • 19. Liu F, Chen M, Li T. Resilient 𝐻∞ control for uncertain turbofan linear switched systems with hybrid switching mechanism and disturbance observer. Applied Mathematics and Computation. 2022; 413: 126597.
  • 20. Deaecto GS, Souza M, Geromel JC. Chattering free control of continuous‐time switched linear systems. IET Control Theory & Applications. 2014; 8(5): 348-354.
  • 21. Gershon E, Shaked U. Robust State-Dependent Switching of Linear Systems with Dwell Time. In Advances in 𝐻∞ Control Theory. Springer Cham. 2019; 27-41.
  • 22. Wang J, Huang Z, Wu Z, et al. Extended dissipative control for singularly perturbed PDT switched systems and its application. IEEE Transactions on Circuits and Systems I: Regular Papers. 2020; 67(12): 5281-5289.
  • 23. Xiang W. Stabilization for continuous-time switched linear systems: A mixed switching scheme. Nonlinear Analysis: Hybrid Systems. 2020; 36:100872.
  • 24. Zhang S, Zhao J. Dwell-Time-Dependent 𝐻∞ Bumpless Transfer Con-trol for Discrete-Time Switched Interval Type-2 Fuzzy Systems. IEEE Transactions on Fuzzy Systems. 2021; 30(70: 2426-2437.
  • 25. Zhang S, Zhao J. Membership-function-dependent H∞ bumpless transfer control for switched interval type-2 fuzzy systems with time-delay. Nonlinear Analysis: Hybrid Systems. 2024; 52: 101457.
  • 26. Priyanka S, Sakthivel R, Mohanapriya S, et al. Composite fault-toler-ant and anti-disturbance control for switched fuzzy stochastic systems. ISA transactions. 2022;125: 99-109.
  • 27. Scherer C, Weiland S. Linear matrix inequalities in control. Lecture Notes in Dutch Institute for Systems and Control. Delft. The Netherlands. 2000; 3.
  • 28. Kemer E, Başak H, Prempain E. Switched 𝐻2-state-feedback control with application to a fighter aircraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2019; 233(14): 5428-5437.
  • 29. Richter H. Advanced control of turbofan engines. Springer Science & Business Media; 2011.
  • 30. Jaw L, Mattingly J. Aircraft engine controls: Design, System Analysis and Health Monitoring. Reston VA. USA: American Institute of Aeronautics and Astronautics; 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6925840-6555-4168-9255-14c517d095de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.