PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Limitation of lignin derivatives as biomarkers of land derived organic matter in the coastal marine sediments

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lignin oxidation products (vanillyl, syringil and cummaryl phenols), and δ13C were measured in a variety of land and marine samples collected in Inner Puck Bay – dominated by marine vascular plants, small river run-off, and shallow bottom, and in Gdańsk Bay – characterized by large river run-off, small marine vascular plants population, and the average depth exceeding euphotic zone. Both study areas are parts of the Gdańsk Basin, Southern Baltic. Typical δ13C values (δ13C  = -28‰) and both composition and concentrations of lignin phenols were measured in samples originating from land. Small, yet easily measurable amounts of lignin phenols were found in marine vascular plants biomass (Σ8 = 90 µg/100 mg organic matter). The biomass was characterized by exceptionally high δ13C values (-12‰). No lignin phenols and typical δ13C values (-22‰) were measured in marine phytoplankton biomass. δ13C and both composition and content of lignin phenols in organic matter of surface sediments collected in the study area fall in the range marked by the end members. The proportion of land derived organic matter calculated using lignin phenols, or δ13C in Gdańsk Bay were comparable, while in Puck Bay they differed substantially. It was concluded that a) in areas with substantial bottom coverage with vascular plants the two end members approach, usually employed to establish the contribution of organic matter sources, is insufficient, b) organic matter originating from three sources: riverine, phytoplankton, and vascular plants contribute to sedimentary organic matter in Puck Bay with the respective proportion 30:40:30.
Czasopismo
Rocznik
Strony
374--386
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
  • Marine Chemistry Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Bergamashi, B., Tsamakis, E., Keil, G., Eglington, T., Montlucon, D., Hedges, J., 1997. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochim. Cosmoch. Ac. 61 (6), 1247-1260.
  • [2] Bianchi, T. S., Cui, Blair, X. Q., Burdige, N. E., Eglinton, D. J., Galy, T. I., Galy, V., 2018. Centers of organic carbon burial and oxidation at the land-ocean interface. Org. Geochem. 115, 138-155, https://doi.org/10.1016/j.orggeochem.2017.09.008.
  • [3] Bianchi, T. S., Siddhartha, M., McKee, B. A., 2002. Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments: implications for differential sedimentation and transport at the coastal margin. Mar. Chem. 64, 211-223.
  • [4] Bianchi, T. S., Rolff, C., Lambert, C. D., 1997. Sources and composition of particulate organic carbon in the Baltic Sea: the use of plant pigments and lignin-phenols as biomarkers. Mar. Ecol. Prog. Ser. 156, 25-31. https://doi.org/10.3354/meps156025.
  • [5] Bordovsky, O., 1965. Accumulation and transformation of organic substances in marine sediments. Mar. Geol. 3, 3-114.
  • [6] Cotrim da Cunha, L., Serve, L., Gadel, F., Blazi, J-L., 2001. Lignin-derived phenolic compounds in the particulate organic matter of a French Mediterranean river: seasonal and spatial variations. Org. Geochem. 32, 305-320.
  • [7] Chester, R., 2003. Marine Geochemistry. Blackwell Publ., Malden, 357-404.
  • [8] Cragg, S. M., Friess, D. A., Gillis, L. G., Trevathan-Tackett, S. M., Terrett, O. M., Watts, J. E., Distel, D. L., Dupree, P., 2020. Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. Ann. Rev. Mar. Sci. 12, 469-497, https://doi.org/10.1146/annurev-marine-010318-095333.
  • [9] Donaldson, A., 2001. Lignification and lignin topochemistry — ultra-structural view. Phytochemistry 57, 859-873.
  • [10] Duarte, C. M., 1991. Seagrass depth limits Aquatic. Botany 40, 363-377.
  • [11] Duarte, C. M., Chiscano, C. L., 1999. Seagrass biomass and production: a reassessment. Aquat. Bot. 65 (1-4), 159-174.
  • [12] Duarte, C. M., Cebrián, J., 1996. The fate of marine autotrophic production. Limnol. Oceanogr. 41, 1758-1766.
  • [13] Duarte, C. M., Marbà, N., Gacia, E., Fourqurean, J. W., Beggins, J., Barrón, C., Apostolaki, E. T., 2010. Seagrass community metabolism: Assessing the carbon sink capacity of sea-grass meadows. Global Biogeochem. Cy. 24 (4), GB4032, https://doi.org/10.1029/2010GB003793.
  • [14] Duarte, C. M., Middelburg, J. J., Caraco, N., 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1-8.
  • [15] Farella, N., Lucotte, M., Louchouarn, P., Roulet, M., 2001. Deforestation modifying terrestrial organic transport in the Rio Tapajós. Brazilian Amazon. Org. Geochem. 32, 1443-1458.
  • [16] Gardner, W. S., Menzel, D. W., 1974. Phenolic aldehydes as indicators of terrestrially derived organic matter in the sea. Geochim. Cosmochim. Ac. 38, 813-822.
  • [17] Gorgon, E., Goni, M., 2003. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. Geochim. Cosmochim. Ac. 67, 2359-2375.
  • [18] Gough, M. A, Fauzi, R., Mantoura, C., Preston, M., 1993. Terrestrial plant biopolymers in marine sediments. Geochim. Cosmochim. Ac. 57, 645-964.
  • [19] Hautala, K., Peuravuori, J., Pihlaja, K., 1997. Estimation of origin of lignin in humic DOM by CuO — oxidation. Chemosphere 35, 809-817.
  • [20] Haddad, R., Martens, Ch, 1987. Biogeochemical cycling in the organic rich coastal marine basin: 9. Sources and accumulation rates of vascular plant-derived organic material. Geochim. Cosmochim. Ac. 51, 2991-3001.
  • [21] Hamminga, M., Mateo, M., 1996. Stable carbon isotopes in sea-grasses: variability in ratios and use in ecological studies. Mar. Ecol. Prog. Ser. 84, 9-18.
  • [22] Hedges, J. I., 1992. Global biogeochemical cycles: progress problems. Mar. Chem 39, 67-93.
  • [23] Hedges, J. I., Clark, W. A., Cowie, G. L., 1988. Organic matter sources to the water column and surficial sediments of a marine bay. Limnol. Oceanogr. 33, 1116-1136.
  • [24] Hedges, J. I., Ertel, J. R., 1982. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal. Chem. 54, 174-178.
  • [25] Hedges, J. I., Ertel, J. R., Leopold, E. B., 1982. Lignin geochemistry of a late Quaternary sediment core from Lake Washington. Geochim. Cosmochim. Ac. 46, 1869-1877.
  • [26] Hedges, J. I., Mann, D. C., 1979. The characterisation of plant tissues by their lignin oxidation products. Geochim. Cosmochim. Ac. 43, 1803-1807.
  • [27] Hedges, J. I., van Geen, A., 1982. A comparison of lignin and stable carbon isotope composition in quaternary sediments. Mar. Chem. 11, 43-53.
  • [28] Hu, F. S., Hedges, J., Gordon, E. S., Brubaker, L. B., 1999. Lignin biomarkers and pollen in postglacial sediments of an Alaska lake. Geochim. Cosmochim. Ac. 63, 1421-1430.
  • [29] Hu, X., Burdige, D., 2007. Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses; Evidence for coupled carbonate dissolution and reprecipitation. Geochim. Cosmochim. Ac. 71, 129-144.
  • [30] Jędrysek, O. M., Krąpiec, M., Skrzypek, G., Kałużny, A., 2003. Air-pollution effect and paleotemperature scale versus δ13 C records in tree rings and in a peat core (Southern Poland). Water Air Soil Pollut. 145, 359-373.
  • [31] Jex, C. N., Pate, G. H., Blyth, A. B., Spencer, R., Hernes, P. J., Khan, S. J., Baker, A., 2014. Lignin biogeochemistry: From modern processes to Quaternary archives. Quaternary Sci. Rev. 87, 46-59.
  • [32] Jørgensen, S. E., Fath, B. D., 2008. Encyclopedia of Ecology. Elsevier, 1407-1413.
  • [33] Ji, Y., Feng, L., Zhang, D., Wang, Q., Pan, G., Li, X., 2020. Hydrodynamic sorting controls the transport and hampers source identification of terrigenous organic matter: A case study in East China Sea inner shelf and its implication. Sci. Total Environ. 706, 135699, https://doi.org/10.1016/j.scitotenv.2019.135699.
  • [34] Jonsson, P., Carman, R., 1994. Changes in deposition of organic matter and nutrients in the Baltic Sea during the twentieth century. Mar. Pollut. Bull. 28, 417-426.
  • [35] Kruk-Dowgiałło, L., 2008. Przyczyny i skutki wieloletnich zmian fitobentosu Zatoki Gdańskiej. Inst. Morski, Gdańsk, 132 pp.
  • [36] Kuliński, K., Pempkowiak, J., 2008. Dissolved organic carbon in the southern Baltic Sea: Quantification of factors affecting its distribution. Estuar. Coast. Shelf Sci. 78, 38-44.
  • [37] Majewski, A., 1990. Zatoka Gdańska. Wyd. Geol., Warsaw, 120-311.
  • [38] Maksymowska, D., Richard, P., Piekarek-Jankowska, H., Riera, P., 2000. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdańsk (Southern Baltic Sea). Estuar. Coast. Shelf Sci. 51, 585-598.
  • [39] Merdy, P., Guillon, E., Dumonceau, J., Aplincourt, M., 2002. Characterisation of a wheat straw cell wall residue by various techniques A comparative study with a synthetic and an extracted lignin. Anal. Chim. Acta 459, 133-142.
  • [40] Miltner, A., Emeis, K., 1999. Origin and transport of terrestrial organic matter from the Oder lagoon to the Arkona Basin. Southern Baltic Sea, Org. Geochem. 31, 57-66.
  • [41] Miltner, A., Emeis, K. C., 2000. Origin and transport of terrestrial organic matter from the Oder lagoon to the Arkona Basin. Southern Baltic Sea. Org. Geoch. 31 (1), 57-66.
  • [42] Miltner, A., Emeis, K., 2001. Terrestrial organic matter in surface sediments of the Baltic Sea, Northwest Europe, as determined by CuO oxidation. Geoch. Cosmochim. Ac. 65, 1285-1299.
  • [43] Miltner, A., Emeis, K. C., Struck, U., 2005. Terrigenous organic matter in Holocene sediments from the central Baltic Sea. NW Europe. Chem. Geol. 216 (34), 313-328.
  • [44] Opsahl, S., Benner, R., 1995. Early digenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications. Geochim. Cosmochim. Ac. 59, 4889-4904.
  • [45] Pempkowiak, J., 1983. C18 reversed-phase trace enrichment of short- and long-chain (C2-C8-C20) fatty acids from dilute aqueous solutions and sea water. J. Chromatogr. 258, 93-102, https://doi.org/10.1016/S0021-9673(00)96401-X.
  • [46] Pempkowiak, J., 1991. Enrichment factors of heavy metals in the Southern Baltic surface sediments dated with 210 Pb and 137 Cs. Environ. Int. 17, 421-428.
  • [47] Pempkowiak, J., Pocklington, R., 1983. Phenolic aldehydes as indicators of the origin of humic substances in marine environments. In: Christman, R. F., Gjessing, E. T. (Eds.), Aquatic and terrestial humic materials. Ann Arbor Sci., Michigan, 371-385.
  • [48] Pempkowiak, J., Bełdowski, J., Pazdro, K., Staniszewski, A., Leipe, T., Emeis, K.-Ch., 2002. The contribution of the sediment fraction to the fluffy layer suspended matter. Oceanologia 44 (4), 513-527.
  • [49] Pempkowiak, J., Tylmann, W., Staniszewski, A., Gołębiewski, R., 2006. Lignin depolymerisation products as biomarkers of the organic matter sedimentary record in 210 Pb-137 Cs-dated lake sediments. Org. Geochem. 37, 1452-1464.
  • [50] Pempkowiak, J., Walkusz-Miotk, J., Bełdowski, J., Walkusz, W., 2006. Heavy metals in zooplankton from the Southern Baltic. Chemosphere 62, 1697-1708.
  • [51] Pradhan, U. K., Wu, Y., Shirodkar, P. V., Zhang, J., Zhang, G., 2014. Sources and distribution of organic matter in thirty-five tropical estuaries along the west coast of India — a preliminary assessment. Estuar. Coast. Shelf Sci. 151, 21-33.
  • [52] Raven, J. A., Johnston, A. M., Kubler, J. E., Korb, R., McInroy, S. G., Handley, L. L., Scrimgeour, C. M., Walker, D. I., Beardall, J., Vanderklift, M., Fredriksen, S., Dunton, K. H., 2002. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct. Plant Biol. 29, 355-378.
  • [53] Reeves, A. D., 1995. The use of organic markers in the differentiation of organic inputs to aquatic Systems. Phys. Chem. Earth 2, 133-140.
  • [54] Requejo, A., Brown, J., Boehm, P., 1986. Lignin geochemistry of sediments from the Narragansett Bay Estuary. Geochim. Cosmochim. Ac. 50, 2707-2717.
  • [55] Requejo, A., Brown, J., Boehm, P., Sauer, T., 2003. Lignin geochemistry of North American coastal and continental shelf sediments. Org. Geochem. 17, 649-662.
  • [56] Sederoff, R. R., MacKayt, J. J., Ralph, J., Hatfield, R. D., 1999. Unexpected variation in lignin. Curr. Opin. Plant Biol. 2, 145-152.
  • [57] Staniszewski, A., 2005. Pochodzenie materii organicznej w osadach dennych Bałtyku Południowego PhD Thes., IO PAN, Sopot, 185 pp.
  • [58] Staniszewski, A., Lejman, A., Pempkowiak, J., 2001. Horizontal and vertical distribution of lignin in surface sediments of the Gdańsk Basin. Oceanologia 43 (4), 421-439.
  • [59] Sun, S., Schefuß, E., Mulitza, S., Chiessi, C. M., Sawakuchi, A. O., Zabel, M., Baker, P. A., Hefter, J., Mollenhauer, G., 2017 Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments. Biogeosciences 14, 2495-2512, https://doi.org/10.5194/bg-14-2495-2017.
  • [60] Thorton, S., McManus, J., 1994. Application of organic carbon and nitrogen stable isotopes as indicators of organic matter provenance in estuarine systems: evidence from the Tay estuary. Scotland. Estuar. Coast. Shelf Sci. 38, 219-233.
  • [61] Voss, M., Larsen, B., Leivuori, M., Vallius, H., 2000. Stable isotope signals of eutrophication in coastal Baltic sediments. J. Marine Syst. 25, 287-298.
  • [62] Wilson, J. O., Valiela, I., Swain, T., 1985. Sources and concentrations of vascular plant material in sediments of Buzzards Bay, Massachusetts, USA. Mar. Biol. 90, 129-137.
  • [63] Winogradow, A., Pempkowiak, J., 2014. Organic carbon burial rates in the Baltic Sea sediments. Estuar. Coast. Shelf Sci. 138, 27-36, https://doi.org/10.1016/j.ecss.2013.12.001.
  • [64] Winogradow, A., Pempkowiak, J., 2018. Characteristics of sedimentary organic matter in coastal and depositional areas in the Baltic Sea. Estuar. Coast. Shelf Sci. 204, 66-75, https://doi.org/10.1016/j.ecss.2018.02.011.
  • [65] Winogradow, A., Mackiewicz, A., Pempkowiak, J., 2019. Seasonal changes in particulate organic matter (POM) concentrations and properties measured from deep areas of the Baltic Sea. Oceanologia 61 (4), 505-521, https://doi.org/10.1016/j.oceano.2019.05.004.
  • [66] Ye, Z. H., Zhonga, R., Morrison, W. H., Himmelsbach, D. S., 2001. Caffeoyl coenzyme A 0-methyltransferase and lignin biosynthesis. Phytochemistry 57, 1177-1185.
  • [67] Yu, T., Wu, W., Liang, W., Lever, M. A., Hinrichs, K. U., Wang, F., 2018. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc. Natl. Acad. Sci. USA 115 (23), 6022-6027, https://doi.org/10.1073/pnas.1718854115.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a690cf23-8d0a-418f-aff5-fa7c58972b14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.