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Remarks on stability of magneto-elastic shocks
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Abstract. The problem of stability of plane shock waves for a model of perfect magneto-
-elasticity is investigated. Important mathematical properties, like loss of strict hyper-
bolicity and loss of genuine nonlinearity, and their consequences for the stability of
magneto-elastic shocks are discussed. It is shown that some of these shocks do not sat-
isfy classical Lax stability conditions. Both compressible and incompressible models of
magneto-elasticity are discussed.
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1. Introduction

Magneto-elasticity is an example of coupled fields theory. It was devel-
oped many years ago (see e.g. classical book [4], and also later books [28]
and [14]). One of the pioneers in this field were Polish scientists Sylwester
Kaliski and Witold Nowacki. In a series of papers (see e.g. [20]–[24])
they analyzed different aspects of magneto-elastic interactions including
the influence of thermal fields. The renewed interest in magneto-elastic
interactions has been noticed with the possibility of new applications of
magneto-sensitive elastomers, materials that change their mechanical be-
havior in response to the application of magnetic fields. More recently new
constitutive formulation of magneto-elasticity based on a total energy den-
sity function has been developed in [11]. This was followed by a number of
articles analyzing different aspects of magneto-elastic interactions (see e.g.
[12], [6]) and the recent book ([13]).
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242 W. Domański

We are interested in the problem of stability of shock waves for the
equations of perfect magneto-elasticity. The modeling equations consist
of Maxwell’s system together with the equations of motion for an elastic
medium, enhanced by the presence of the magnetic stresses. All equations
are written in the material coordinates. Both geometrical and physical
elastic nonlinearities are taken into account in the model. We analyze
a compressible as well as an incompressible model. A perfect magneto-
elastic medium is by definition an infinitely conducting, electrically neutral,
non-magnetizable, homogeneous and isotropic elastic solid interacting with
a magnetic field. We discuss some important mathematical properties,
like loss of strict hyperbolicity and loss of genuine nonlinearity, and their
consequences for the stability of magneto-elastic shocks. We show that
some of these shocks do not satisfy classical Lax stability conditions [25].

In the mathematical literature (see e.g. [27]), shock waves are de-
fined as special piecewise smooth discontinuous solutions of the first order
hyperbolic systems of conservation laws. According to this definition,
a shock wave is determined by a triple: a smooth singular surface S across
which a conserved quantity u suffers a jump, and two functions u+ and
u− defined in respective domains Ω+ and Ω− on either side of this sur-
face. The functions u+ and u− are smooth solutions of the quasi-linear
form of conservation laws in Ω+ and Ω−, respectively. Moreover, they sat-
isfy Rankine-Hugoniot jump conditions [27] which relate to the values of
the jumps in the conserved quantity and in the corresponding fluxes, to
the shock speeds. Besides, shocks should satisfy certain stability require-
ments which usually follow from the second law of thermodynamics and
are connected with the growth of the entropy across the shock front.

First mathematical papers devoted to shock stability were concerned
with gas and fluid dynamics. Based on the applications in these fields,
Lax [25] formulated general stability conditions for plane waves in strictly
hyperbolic and genuinely nonlinear m×m systems:

∂u

∂t
+ A(u)

∂u

∂x
= 0 (1.1)

where A(u) is an m×m matrix. Strict hyperbolicity means distinctiveness
of the wave speeds (eigenvalues of matrix A(u)), that is: λj(u) ̸= λk(u)
for j ̸= k. Genuine nonlinearity of a k – wave is defined as follows:

∇uλk(u) · rk(u) ̸= 0 (1.2)

where rk(u) is an eigenvector of matrix A(u) corresponding to the eigen-
value λk(u). Lax conditions generalize the supersonic ahead and subsonic
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Remarks on stability of magneto-elastic shocks 243

behind the shock front, stability requirements known for gases. In gas
dynamics they are equivalent to the physical condition of entropy growth
under passage throw the discontinuity, hence even for abstract hyperbolic
systems they are often called Lax entropy conditions. These conditions
specify inequalities which every shock speed σ must satisfy to define a sta-
ble shock front, namely, the shock speed σ should be such that:

λ+
k < σ < λ−

k ∧ λ−
k−1 < σ < λ+

k+1 (1.3)

where λ±
k are linearized wave speeds(eigenvalues of matrix A(u) of a k-wave

evaluated at the appropriate side of the discontinuity). Equivalently, using
Lax words [25], these requirements may be formulated as follows: ”There
is an index k such that the shock speed lies between the (k − 1) and k-th
characteristic speeds with respect to the state on the left of the shock, and
between the k-th and (k+ 1) characteristic speeds on the right.” Hence Lax
shock inequalities determine the precise number of incoming and outgoing
characteristics from the left and right hand side of the shock front.

Lax conditions can single out all stable shocks but only for strictly
hyperbolic and genuinely nonlinear systems. However, these conditions
do not give satisfactory stability results in many physical problems like
e.g. multiphase flows, phase transitions or even purely elastic waves, so in
particular for models with non-convex fluxes which arise quite naturally
in many physical and mechanical problems where strict hyperbolicity and
genuinely nonlinearity assumptions are typically violated. In such systems
non-classical shocks may appear, that is e.g. shocks with too many in-
coming characteristics (overcompressive shocks) or too few characteristics
(undercompressive shocks).

In this paper we first analyze the problem of loss of strict hyperbol-
icity and loss of genuine nonlinearity for the models of a perfect magneto-
elasticity. Next we study the violation of Lax conditions for these models
and the problem of existence of non-classical magneto-elastic shocks. We
show that both kinds of these non-classical shock waves are possible in
magneto-elasticity. We propose an asymptotic approach to derive sim-
plified models for studying a subtle problem of stability of intermediate
magneto-elastic shocks.

2. Compressible Perfect Magneto-elasticity

Dynamical equations of perfect magneto-elasticity were investigated
at the beginning of the seventies by Bazer and some of his co-workers
[1], [2] and [3] (see also Maugin’s book [28]). The model of magneto-
elasticity is not only challenging from the mathematical point of view, but
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244 W. Domański

it may have potential applications, apart from magneto-sensive elastomers
mentioned in the introduction, also e.g. in astrophysics. The study of
heavy neutron stars – pulsars, revealed (see e.g. [32] or [15]) that the
outer crust of them could be treated as a solid. These small but very
dense objects rotate very quickly producing sudden pulses of light. There
are some speculations [32] that the model of magneto-elasticity may be
helpful in explaining intriguing and strange phenomena connected with
these peculiar objects i.e. pulsars.

The equations of perfect magneto-elasticity written in spatial (Eule-
rian) coordinates, marked here by a ”prime”, look as follows [2]:

div′B′ = 0

∂B

∂t

′
+ rot′(B′ × v′) = 0

ρ′(
∂v

∂t

′
+ v′ · grad′v′) − div′T ′ − rot′B′ ×B′ = 0

∂ρ′

∂t
+ div′(ρ′v′) = 0

∂S′

∂t
+ v′ · grad′S′ = 0

(2.1)

with B′ – magnetic flux density, q′ – density of electric charge ρ′ – density,
v′ – velocity, T ′ – Cauchy stress tensor, S′ – entropy.

Next we transform from spatial to material (Lagrangian) coordinates
and restrict ourselves to the one-space dimensional case. This procedure is
described in details in the Appendix I of [2]. The resulting equations look
as follows:

B1 = const.

∂(1 + m1)B

∂t
− ∂(B1v)

∂x
= 0

∂v

∂t
− ∂T

∂x
− ∂M

∂x
= 0

∂m

∂t
− ∂v

∂x
= 0

∂S

∂t
= 0

(2.2)
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Remarks on stability of magneto-elastic shocks 245

here B = (B1, B2, B3 )T 1 is a vector of magnetic induction, m =
= (m1, m2, m3 )T – displacement gradient vector, v = ( v1, v2, v3 )T –
velocity, T – elastic stress, M – magnetic stress, S – entropy, x is a direc-
tion of wave propagation in Lagrangian coordinates. We assume from now
on that the density ρ in material coordinates is normalized to 1.

2.1. Conservative and Quasilinear Forms

Writing system (2.2) in a standard form we have:

∂F 0(u)

∂t
+

∂F 1(u)

∂x
= 0

with

u = (B2, B3, v1, v2, v3,m1,m2,m3, S)T = (B⊥, v∥,v⊥,m∥,m⊥, S)T ,

F 0(u) = ( (1 + m1)B2, (1 + m1)B3, v1, v2, v3, m1, m2, m3, S )
T
,

F 1(u) = (B1v2, B1v3, T11 + M11, T12 + M12, T13 + M13, v1, v2, v3, 0 )
T
.

Specifying the components of magnetic stress tensor

M11 =
1

2µ
(B2

1 −B2
2 −B2

3), M12 =
1

µ
B1B2, M13 =

1

µ
B1B3,

and assuming that the medium is hyperelastic:

T1j =
∂W

∂mj
≡ W ′j , j = 1, 2, 3

with W = W (m1,m2,m3, S) — energy density, we write the system of
perfect magneto-elasticity in the following quasilinear form:

∂u

∂t
+ A(u)

∂u

∂x
= 0 (2.3)

with

A(u) = −



0 0 − B2
1+m1

B1
1+m1

0 0 0 0 0

0 0 − B3
1+m1

0 B1
1+m1

0 0 0 0

−B̃2 −B̃3 0 0 0 W ′11 W ′12 W ′13 W ′14
B̃1 0 0 0 0 W ′12 W ′22 W ′23 W ′24
0 B̃1 0 0 0 W ′13 W ′32 W ′33 W ′34
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0


1 Superscript T denotes a transpose, so (B1, B2, B3 )T means a column vector.
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246 W. Domański

where B̃j ≡ Bj/µ. It is possible to calculate (with the help of symbolic
computations) all the eigenvalues of A(u) explicitly, however the formulas
are extremely lengthy and we will not present them here. Instead we will
analyze the linearized equations.

2.2. Linearized System

Let us first look at matrix A(u), linearized at the zero constant state
u0 = 0. For simplicity, using the isotropy assumption, we may represent
the energy function as W = Φ(m1, N, S) with N = m2

2 + m2
3. Matrix

A(0) looks then as follows:

A(0) = −



0 0 0 B1 0 0 0 0 0
0 0 0 0 B1 0 0 0 0
0 0 0 0 0 Φ ′11 0 0 Φ ′1S

B̃1 0 0 0 0 0 2Φ ′N 0 0
0 B̃1 0 0 0 0 0 2Φ ′N 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0



here Φ ′1 = ∂Φ
∂m1

, Φ ′N = ∂Φ
∂N , Φ ′S = ∂Φ

∂S . The eigenvalues of A(0) are:

λ1 = −
√

B1B̃1 + 2Φ ′N = λ2 = −λ3 = −λ4,

λ5 = −
√

Φ ′11 = −λ6,

λ7 = λ8 = λ9 = 0.

The corresponding right eigenvectors have the form:

r1 =( 0, B1, 0, 0,−λ1, 0, 0, 1, 0 ) (transverse),

r2 =(B1, 0, 0,−λ2, 0, 0, 1, 0, 0 ) (transverse),

r3 =( 0, B1, 0, 0,−λ3, 0, 0, 1, 0 ) (transverse),

r4 =(B1, 0, 0,−λ4, 0, 0, 1, 0, 0 ) (transverse),

r5 =( 0, 0, −λ5, 0, 0, 1, 0, 0, 0 ) (longitudinal),

r6 =( 0, 0, −λ6, 0, 0, 1, 0, 0, 0 ) (longitudinal),

r7 =( 0,−2
Φ ′N

B̃1

, 0, 0, 0, 0, 0, 1, 0 ) (transverse),
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Remarks on stability of magneto-elastic shocks 247

r8 =(−2
Φ ′N

B̃1

, 0, 0, 0, 0, 0, 1, 0, 0 ) (transverse),

r9 =( 0, 0, 0, 0, 0,−Φ ′1S

Φ ′11
, 0, 0, 1 ) (longitudinal).

At the zero constant state, we have three pairs of waves propagating in the
mutually opposite directions in each pair. There are two pairs of doubled,
coupled magneto–elastic shear waves, and one pair of longitudinal pure
elastic waves. Hence even for the linearized equations of the compressible
perfect magneto-elasticity, we have to deal with a loss of strict hyperbolicity.

2.3. Eigenvalues of A(u)

As we have already mentioned, the formulas for the eigenvalues of
matrix A(u) are cumbersome but when we drop out the third components
of the magnetic field – B3 and the gradient of displacement – m3, these
formulas simplify substantially. Namely let us assume that B⊥ = (B2, 0),
m⊥ = (m2, 0). Then the squares of the nonzero eigenvalues of A(u) (the
squares of the speeds of the intermediate, slow and fast waves) take the
forms:

c2I = 2Φ ′N + b21,

c2S =
1

2

(
Φ ′11 + 2Φ ′N + 4Φ ′NN m2

2 + b21 + b22 −
√

∆
)
,

c2F =
1

2

(
Φ ′11 + 2Φ ′N + 4Φ ′NN m2

2 + b21 + b22 +
√

∆
)
,

(2.4)

with b2j ≡ B2
j

µ (1+m1)
for j = 1, 2, and

∆ = (Φ ′11 + b22 − 2Φ ′N − 4Φ ′NN m2
2 − b21)2 + 4(2Φ ′NN m2 − b1b2)2.

System (2.3) is hyperbolic under some additional assumptions on the en-
ergy potential Φ. We do not discuss this here but we will come back to
this issue when we specify the energy potential Φ explicitly by the formula
(2.7) for a special Hookean material.

2.4. Rankine-Hugoniot Jump Conditions

A shock wave in solids is related with the discontinuity in velocity,
deformation gradient or gradient of displacement but not with displacement
itself. Let us define the jump in quantity ϕ as

[ϕ] = ϕ+ − ϕ−

 

   
   

 -
   

   
   

   
   

- 
   

   
   

   
  -

   
   

   
   

   
- 

   
   

   
   

  -
   

   
 



248 W. Domański

where ϕ+ and ϕ− denote the values of ϕ ahesd and behind the shock
front, appriopriately. Shocks in a perfect magneto-elastic compressible
medium satisfy the following Rankine-Hugoniot (R-H) jump relations at
the discontinuity

[B1] = 0

σ [(1 + m1)B⊥] + [B1 v⊥] = 0

σ [v1] +

[
Φ ′1 −

|B⊥|2

2µ

]
= 0

σ [v⊥] +

[
2m⊥Φ ′N +

B1

µ
B⊥

]
= 0

σ [m] + [v] = 0.

|σ| [S] ≥ 0

(2.5)

Using the relations for the jump of the energy density, one can also de-
rive the magneto-elastic Hugoniot relation which in our notation simplifies
to

[ Φ ] − ⟨Φm⟩[v] +
[m1]

4µ
[B⊥]2 = 0 (2.6)

where ⟨Φm⟩ ≡ 1
2 ((Φm)+ + (Φm)−). We will return to this formula in the

concluding remarks.
Magneto-elastic (ME) shocks closely resemble MHD shocks [31]. In

both systems we may distinguish fast, slow, intermediate, switch-off and
switch-on shocks. Across the intermediate MHD shock as well as the inter-
mediate ME shock, the sign of the tangential component of the magnetic
field changes. However, while studying ME shocks, we have to overcome
additional complications connected e.g. with the presence of shear stresses.
To simplify the analysis, in the next subsection we specify the material and
consider the special Hookean medium. Although the elastic constitutive
relations in that model are physically linear, the magneto-elastic model is
still highly nonlinear due to the coupling with the magnetic field.

2.5. Special Hookean Medium

For a special Hookean medium for which

Φ = T0S +
1

2
(c2Lm

2
1 + c2TN), (2.7)
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Remarks on stability of magneto-elastic shocks 249

the formulas for the eigenvalues (2.4) reduce to

c2I = c2T + b21,

c2S,F =
1

2

(
c2L + c2T + b21 + b22 ∓

√
∆
)

with

∆ = (c2L − c2T )2 + 2(c2L − c2T )(b22 − b21) + (b21 + b22)2 = b4(δ2 − 2δ cos 2α + 1),

where b2 ≡ b21 + b22, δ ≡ (c2L − c2T )/b2, α is an angle between vector B =
= (B1, B2, 0) and the x - axis; cL and cT are the speeds of the longitudinal
and shear elastic waves. We assume that c2L > 2c2T . Typically, under rea-
sonable assumptions in most cases, we have that cS < cI < cF . However,
it may happen that locally cS = cI < cF or cS < cI = cF or else cS = cI =
= cF . In particular, for a special Hookean material (2.7), for the angle
α = 0, that is B = (B1, 0, 0), we have c2F = c2L, and c2S = c2I = c2T + b21. On
the other hand for α = π/2, that is B = (0, B2, 0), we have c2F = c2L + b22,
and c2S = c2I = c2T .

Hence we see that the eigenvalues may collide and the strict hyper-
bolicity assumption is violated. Similarly one can prove that the genuine
nonliearity assumption also fails. Since these two assumptions are the key
ingredients of the classical theory based on Lax conditions, therefore we
need to apply different than classical approach to shock waves. First, in
the next section, we will describe what kind of magneto-elastic shock waves
appear in the special Hookean media.

2.6. Shocks in a Special Hookean Medium

Magneto-elastic shocks in the special Hookean medium satisfy the R-H
conditions (2.5). Having specified the energy (2.7), we can write explic-
itly in terms of wave speeds, those R-H jumps which contain the energy
(while the other R-H conditions remain the same). Namely, for jumps
corresponding to the conservation of momentum equation, we have

σ [v1] +

[
c2Lm1 −

|B⊥|2

2µ

]
= 0

σ [v⊥] +

[
c2Lm1 +

B1

µ
B⊥

]
= 0.

In the case of a special Hookean medium, it is possible to derive from
the R-H conditions, the explicit formulas for the shock speeds and express
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250 W. Domański

them in terms of the quantities, e.g. ahead or behind of the shock front.
Comparing the shock velocities with characteristic speeds in front and be-
hind of the shock front we get the information about shock stability.

An interesting feature can be observed for slow magneto-elastic shocks
waves in the special Hookean medium. Namely, assume that the trans-
verse magnetic field is perpendicular to the x-axis, and denote the relative
strength of the shock by

β = [B2]/|B−|

where [B2] = B+
2 −B−

2 , and |B−| =
√

(B−
1 )2 + (B−

2 )2. Then we have no-

ticed that for a certain range of a parameter β, slow magneto-elastic shock
waves satisfy classical geometric Lax conditions, that is they are subslow
ahead while beeing superslow and subintermediate behind the shock front:

c+S < σS < c−S ,

σS < c+I .

There are yet values of β for which slow magneto-elastic shocks are over-
compressive, that is, they are subslow behind, and superintermediate and
subfast ahead of the shock front. In this case there are too many incoming
characteristics into the shock front:

c+I < σS < c+F ,

σS < c−S .

On the other hand intermediate magneto-elastic shocks may as well in
some range become overcompressive but they may also be undercompres-
sive, in which case the following inequalities hold:

c+I < σSI < c−I ,

c+S < σI < c−F .

Both overcompressive and also undercompressive shocks belong to the
family of nonclassical shocks. Based on the analysis of a pure hyperbolic
perfect magneto-elasticity model, such shocks were considered unphysical
and have been rejected as unstable [3].

In the remaining part of this work we will concentrate on the incom-
pressible model of perfect magneto-elasticity. The additional assumption
of incompressibility allows us to keep a general energy density function Φ
in the equations without restriction to a special Hookean material.
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Remarks on stability of magneto-elastic shocks 251

3. Incompressible Perfect Magneto-elasticity

Under the incompressibility assumption, the equations of perfect
magneto-elasticity take the following form [9]:

∂B⊥

∂t
− ∂(B1 v⊥)

∂x
= 0

∂v⊥

∂t
−

∂(2Φ ′Nm⊥ + B1

µ B⊥)

∂x
= 0

∂m⊥

∂t
− ∂v⊥

∂x
= 0

∂S

∂t
= 0

(3.1)

where now Φ = Φ(N,S), B⊥,v⊥, and m⊥ are the transverse components
of the appropriate fields, B1 = const., v1 = 0 and w1 = 0, the density ρ as
before is normalized to 1.

3.1. Quasilinear Form

Let us denote the vector of dependent variables which consists of
transverse components of the magnetic field, velocity and strain vectors
as u = (B⊥,v⊥,m⊥, S)T . Writing the above system (3.1) in a quasilinear
form (2.3), we can calculate the eigenvalues of the appropriate matrix:

A(u) = −



0 0 B1 0 0 0 0
0 0 0 B1 0 0 0

−B̃1 0 0 0 P2 Q R2

0 B̃1 0 0 Q P3 R3

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0


(3.2)

here B̃1 ≡ B1

µ , Q ≡ 4m2m3Φ ′NN , Pj ≡ 2Φ ′N + 4m2
jΦ ′NN , and Rj ≡

≡ 2mjΦ ′NS for j = 2, 3. Let c2A ≡ B2
1/µ be the speed of Alfven wave.

Under the following assumptions: Φ ′NN ≥ 0 and Φ ′N ≥ − 1
2c

2
A, the

quasilinear system with A(u) from (3.2) is hyperbolic. We have a pair of
fast waves with speeds ∓cF such that c2F = c2A + 2Φ ′N + 4NΦ ′NN , and
a pair of slow waves ∓cS : c2S = c2A + 2Φ ′N . When Φ ′NN = 0, the speeds
of fast and slow waves coincide and become the speeds of a pair of double
intermediate waves ±cI : c2I = c2A + 2Φ ′N .
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252 W. Domański

3.2. Rankine-Hugoniot Jump Conditions

Incompressible magneto-elastic shocks satisfy the following Rankine-
Hugoniot jump conditions at the surface of discontinuity

σ [B⊥] + [B1 v⊥] = 0

σ [v⊥] +

[
2NΦ ′N +

B1

µ
B⊥

]
= 0

σ [m⊥] + [v⊥] = 0

|σ| [S] ≥ 0.

In the intermediate incompressible magneto-elastic shocks, |m⊥|2 does not
change across the shock front, however, m⊥ may rotate across the shock.
Since

[Φ ′N ] ([m⊥] × < m⊥ >) = 0

where < m⊥ >= 1
2 (m+

⊥ + m−
⊥), so we can classify the incompressible

magneto-elastic shocks as linearly polarized (fast, slow, switch-on, switch-
off), satisfying

[m⊥] × < m⊥ >= 0,

and circularly polarized shocks (intermediate), satisfying

[Φ ′N ] = 0.

The speed of an intermediate shock wave σI , calculated from the R-H
condition is equal to σ2

I = c2A + 2Φ ′N
− = c2A + 2Φ ′N

+.

3.3. Remarks on Stability of Intermediate Shocks

The stability of intermediate shock waves is a very controversial issue.
Even for a simpler than magneto-elasticity but similar model of magne-
tohydrodynamics, there was a long lasting debate whether MHD interme-
diate shocks are stable or not. There was a strong belief in the scientific
community (see e.g. [19]) that some properties of intermediate shocks
were inconsistent with the mathematical theory of discontinues solutions
of hyperbolic conservation laws. Therefore intermediate shocks should be
disregarded and treated as unstable. However, later numerical simulations
(see e.g. [5]) revealed that intermediate MHD shocks are stable at least for
a range of material parameters.

The problem is that idealized mathematical theory that we have pre-
sented here, is not a suitable tool to investigate intermediate and other
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nonclassical shocks stability. A pure hyperbolic model in which a shock
wave is treated as a discontinuity is not enough. One has to analyze the
structure of a shock front. Therefore one needs to enhance the hyperbolic
model by viscous, thermal and other effects like it was done e.g. for the
equations of elasticity in [16], [17] or [18]. Then using e.g. a viscous profile
criterion one can decide whether a given shock profile is stable. This crite-
rion is based on studying travelling waves solutions to the conservation laws
enhanced by the viscous and strain gradient terms. The problem of the sta-
bility of shocks is reduced to the existence of trajectories (viscous profiles)
joining the critical points of the obtained dynamical system. Undercom-
pressive shocks are very difficult to investigate by this method because they
correspond to saddle - saddle connections which are very subtle to study.
Moreover, the fact that the full system of magneto-elasticity is large and
complicated makes the analysis even harder. Therefore it is very helpful
to use the method of weakly nonlinear asymptotics and reduce the original
equations to some canonical simplified models for small amplitude waves.
We have derived asymptotic models (see e.g [7], [8], [9]) which are new in
the context of magneto-elasticity, and which as we hope will be useful in
the analysis of nonclassical magneto-elastic shocks. The obtained asymp-
totic models for small wave amplitudes are of the type of mKdV-Burgers
equations, complex Burgers equations, etc. The analysis of viscous profiles
for such equations is much easier then for original system. Hence, one can
derive stability results for intermediate magneto-elastic shock waves on the
basis of the study of these simplified models. The detailed analysis is yet
to be done.

4. Concluding Remarks

We have presented a mathematical theory of stability of plane
magneto-elastic shock waves based on Lax conditions. We have shown that
these conditions are not satisfied for some of the magneto-elastic shocks
and so these shocks were found to be nonclassical. On the example of
magneto-elasticity we can see that classical mathematical theory of shock
waves which disregards dissipative, dispersive and other physical effects,
and which treats shocks as discontinues solutions of hyperbolic conserva-
tion laws is not satisfactory. This theory fails when we have to deal with
nonclassical shocks. We propose to use the asymptotic method of multiple
scale to derive simplified canonical models which are tractable as far as
the travelling waves analysis is concerned. This method allows to draw
conclusion about the stability of nonclassical shocks.
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One should also emphasize that thermodynamics must be included in

any consideration of shock stability, since shock stability is closely related

to the growth of entropy. Maugin [30] showed that the entropy production

rate is related to the power expanded by the driving force which acts on

the material manifold. This approach has direct applications to shock

stability since such a force is involved in a kinetic relation. This relation

is an additional constraint which some of the nonclassical shock waves

must satisfy in order to be stable [26]. In particular Maugin [29] has given

an explicit form of the kinetic relation in magneto-elasticity based on the

Hugoniot relation (2.6).

Part of this work is based on the conference proceedings paper [10].

Received 27 October 2015; Revised 13 November 2015.
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W. DOMAŃSKI

Uwagi na temat magneto-sprȩżystych fal uderzeniowych
Streszczenie. Rozważono problem stabilności fal uderzeniowych dla modelu dosko-
na lej magneto-sprȩżystości. Przedyskutowano ważne matematyczne w lasności takie
jak utrata ścis lej hiperboliczności i istotnej nieliniowości oraz ich konsekwencje dla
stabilności magneto-sprȩżystych fal uderzeniowych. Pokazano, że pewne z tych fal
nie spe lniaja̧ klasycznego warunku stabilności Laxa. Zanalizowano zarówno ścísliwe
jak i nieścísliwe modele magneto-sprȩżystości.
S lowa kluczowe: doskona la magneto-sprȩżystość, fale uderzeniowe, warunki sta-
bilności
DOI: 10.5604/12345865.1186409
Źród lo finansowania pracy – dzia lalność statutowa uczelni
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