Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Despite the growing popularity of machine learning (ML), such solutions are often incomprehensible to employees and difficult to control. Addressing this issue, we discuss some essential problems of explainable ML applications in the fast-moving consumer goods (FMCG) market. This research puts forward a new approach to effective supply management by utilizing rough sets (RST), distance-based clustering, and dimensionality reduction techniques. In the presented case study, we aim to reduce the work done by experts by applying a single delivery plan to many similar points of sale (PoS). We achieve this objective by clustering vending machines based on historical sales patterns. To verify the feasibility of such an approach, we performed a series of experiments related to demand prediction on two data representations with various clustering techniques. The conducted experiments confirmed that, without losing quality in terms of MAE and RMSE, we could operate on PoS in an aggregate manner, thus reducing the workload of preparing delivery plans.
Rocznik
Tom
Strony
19--31
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
autor
- Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
- School of Information Systems, Queensland University of Technology, Gardens Point Campus, Brisbane, Australia
autor
- FitFood, Solskiego 11/28, 31-216 Cracow, Poland
autor
- Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
autor
- Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
- QED Software, ul. Mazowiecka 11/49, 00-052 Warsaw, Poland
autor
- FitFood, Solskiego 11/28, 31-216 Cracow, Poland
Bibliografia
- [1] Adadi, A. and Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI), IEEE Access 6: 52138-52160, DOI: 10.1109/ACCESS.2018.2870052.
- [2] Averkin, A. (2023). Ideas of Lotfi Zadeh in explainable artificial intelligence, in S.N. Shahbazova et al. (Eds), Recent Developments and the New Directions of Research, Foundations, and Applications, Springer, Cham, pp. 45-48.
- [3] Barredo Arrieta, A., Diaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R. and Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, Information Fusion 58: 82-115, DOI: 10.1016/j.inffus.2019.12.012.
- [4] Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Patel, P., Qian, B., Wen, Z., Shah, T., Morgan, G. and Ranjan, R. (2023). Explainable AI (XAI): Core ideas, techniques, and solutions, ACM Computing Surveys 55(9): 1-33, DOI: 10.1145/3561048.
- [5] Ezugwu, A.E., Ikotun, A.M., Oyelade, O.O., Abualigah, L., Agushaka, J.O., Eke, C.I. and Akinyelu, A.A. (2022). A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects, Engineering Applications of Artificial Intelligence 110: 104743, DOI: 10.1016/j.engappai.2022.104743.
- [6] Fisher, A., Rudin, C. and Dominici, F. (2019). All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously, Journal of Machine Learning Research 20(177):1-81.
- [7] Grzegorowski, M. (2023). Selected aspects of interactive feature extraction, in J.F. Peters et al. (Eds), Transactions on Rough Sets XXIII, Springer, Berlin/Heidelberg, pp. 121-287, DOI: 10.1007/978-3-662-66544-2_8.
- [8] Grzegorowski, M., Janusz, A., Lazewski, S., Swiechowski, M. and Jankowska, M. (2022). Prescriptive analytics for optimization of FMCG delivery plans, in D. Ciucci et al. (Eds), Proceedings of IPMU’22, Springer, Berlin/Heidelberg, pp. 44-53.
- [9] Grzegorowski, M., Janusz, A., Śliwa, G., Marcinowski, L. and Skowron, A. (2023). Towards ML explainability with rough sets, clustering, and dimensionality reduction, in A. Campagner et al. (Eds), Proceedings of IJCRS 2023, Springer, Berlin/Heidelberg, pp. 371-386.
- [10] Grzegorowski, M. and Ślęzak, D. (2019). On resilient feature selection: Computational foundations of r-C-reducts, Information Sciences 499: 25-44, DOI: 10.1016/j.ins.2019.05.041.
- [11] Guo, X., Lin, H., Wu, Y. and Peng, M. (2020). A new data clustering strategy for enhancing mutual privacy in healthcare IoT systems, Future Generation Computer Systems 113: 407-417, DOI: 10.1016/j.future.2020.07.023.
- [12] Habbal, A., Ali, M.K. and Abuzaraida, M.A. (2024). Artificial Intelligence Trust, Risk and Security Management (AI TRiSM): Frameworks, applications, challenges and future research directions, Expert Systems with Applications 240: 122442, DOI: 10.1016/j.eswa.2023.122442.
- [13] Heide, N.F., Muller, E., Petereit, J. and Heizmann, M. (2021). X3SEG: Model-agnostic explanations for the semantic segmentation of 3D point clouds with prototypes and criticism, 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, USA, pp. 3687-3691.
- [14] Ikotun, A.M., Ezugwu, A.E., Abualigah, L., Abuhaija, B. and Jia, H. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data, Information Sciences 622: 178-210, DOI: 10.1016/j.ins.2022.11.139.
- [15] Janusz, A. and Ślęzak, D. (2015). Computation of approximate reducts with dynamically adjusted approximation threshold, in F. Esposito et al. (Eds), Proceedings of ISMIS 2015, Springer, Berlin/Heidelberg, pp. 19-28.
- [16] Kannout, E., Grzegorowski, M., Grodzki, M. and Nguyen, H.S. (2024). Clustering-based frequent pattern mining framework for solving cold-start problem in recommender systems, IEEE Access 12: 13678-13698.
- [17] Malefors, C., Secondi, L., Marchetti, S. and Eriksson, M. (2021). Food waste reduction and economic savings in times of crisis: The potential of machine learning methods to plan guest attendance in Swedish public catering during the COVID-19 pandemic, Socio-Economic Planning Sciences 82(A): 101041.
- [18] Min, B., Ross, H., Sulem, E., Veyseh, A.P.B., Nguyen, T.H., Sainz, O., Agirre, E., Heintz, I. and Roth, D. (2023). Recent advances in natural language processing via large pre-trained language models: A survey, ACM Computing Surveys 56(2): 1-40, DOI: 10.1145/3605943.
- [19] Pawlak, Z. (1982). Rough sets, International Journal of Computer and Information Sciences 11: 341-356.
- [20] Pawlak, Z. and Skowron, A. (2007). Rudiments of rough sets, Information Sciences 177(1): 3-27.
- [21] Penta, A. and Pal, A. (2021). What is this cluster about? explaining textual clusters by extracting relevant keywords, Knowledge-Based Systems 229: 107342.
- [22] Pięta, P. and Szmuc, T. (2021). Applications of rough sets in big data analysis: An overview, International Journal of Applied Mathematics and Computer Science 31(4): 659-683, DOI: 10.34768/amcs-2021-0046.
- [23] Przybyłek, A., Albecka, M., Springer, O. and Kowalski, W. (2022). Game-based sprint retrospectives: Multiple action research, Empirical Software Engineering 27(1): 1.
- [24] Riza, L. S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Ślęzak, D. and Benítez, J.M. (2014). Implementing algorithms of rough set theory and fuzzy rough set theory in the R package ‘RoughSets’, Information Sciences 287(0): 68-89.
- [25] Stawicki, S., Ślęzak, D., Janusz, A. and Widz, S. (2017). Decision bireducts and decision reducts - A comparison, International Journal of Approximate Reasoning 84: 75-109.
- [26] Tarallo, E., Akabane, G.K., Shimabukuro, C.I., Mello, J. and Amancio, D. (2019). Machine learning in predicting demand for fast-moving consumer goods: An exploratory research, IFAC-PapersOnLine 52(13): 737-742.
- [27] Zhang, C.-X., Zhang, J.-S. and Yin, Q.-Y. (2017). A ranking-based strategy to prune variable selection ensembles, Knowledge-Based Systems 125: 13-25.
- [28] Zong, W., Chow, Y. and Susilo, W. (2020). Interactive three-dimensional visualization of network intrusion detection data for machine learning, Future Generation Computer Systems 102: 292-306.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a689f0ab-dd8f-4ae3-8c45-31713f5e065e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.