PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Eigenproblems in nanomechanics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is semitutorial in nature to make it accessible to readers from a broad range of disciplines. Our particular focus is on cataloging the known problems in nanomechanics as eigenproblems. Physical insights obtained from both analytical results and numerical simulations of various researchers (including our own) are also discussed. The paper is organized in two broad sections. In the second section the attention is focused on the analysis of quantum dots. The analysis of electronic properties of strained semiconductor structures is reduced here to the solution of a linear boundary value problem (the classical Helmholtz wave equation). In Sec 3, we provide, intermixed with a literature review, details on various methods and issues in calculation free vibrations/loss of stability for carbon nanotubes. The effect of various parameters associated with the material anisotropy are addressed. Typically classical continuum mechanics, which is intrinsically size independent, is employed for calculations.
Rocznik
Strony
819--825
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • Institute of Machine Design, Cracow University of Technology, 37 Jana Pawla II St., 31-864 Kraków, Poland
autor
  • Institute of Machine Design, Cracow University of Technology, 37 Jana Pawla II St., 31-864 Kraków, Poland
Bibliografia
  • [1] R. Courant and D. Hilbert, Methods of Mathematical Physics, John Wiley & Sons, London, 2008.
  • [2] An H. Lę, Nonlinear Eigenvalue Problems, Department of Mathematics, University of Utah, Salt Lake City, 2005.
  • [3] G. Prodi, Eigenvalues of Non-Linear Problems, Springer, Berlin, 2010.
  • [4] V. Mehrmann and H. Voss, “Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods”, GAMM Mitteilungen 28, CD-ROM (2005).
  • [5] V. Mehrmann and D. Watkins, Polynomial Eigenvalue Problems with Hamiltonian Structure, ETNA, London, 2002.
  • [6] R.H. Baughman, A.A. Zakhidov, and W.A.D. Heer, “Carbon nanotubes-the route toward applications”, Science 297, 787–792 (2002).
  • [7] D. Srivastava, C. Wei, and K. Cho, “Nanomechanics of carbon nanotubes and composites”, Applied Mechanics Reviews 56, 215–230 (2003).
  • [8] P. Ajayan and T. Ebbesen, “Nanometre-size tubes of carbon”, Reports on Progress in Physics 60, 1025–1062 (1997).
  • [9] C. Dekker, “Carbon nanotubes as molecular quantum wires”, Physics Today 52, 22–28 (1999).
  • [10] P. Harris, Carbon Nanotubes and Related Structures: New Materials for the 21st Century, Cambridge University Press, Cambridge, 1999.
  • [11] A. Banaś and A. Muc, “Current problems in design of quantum dots used in semiconductors”, Key Eng Mat. 542, 1–6 (2013).
  • [12] A. Zaslavsky, K.R. Milkove, Y.H. Lee, B. Ferland, and T.O. Sedgewick, “Strain relaxation in silicon/germanium microstructures observed by resonant tunneling spectroscopy”, Applied Physics Letters 67, 3921–29 (1995).
  • [13] J. Singh, Physics of Semiconductors and Their Heterostructures McGraw-Hill, New York, 1993.
  • [14] B. Lassen, L.C.L.Y. Voon, M. Willatzen, and R.V.N. Melnik “Exact envelopefunction theory versus symmetrized Hamiltonian for quantum wires: a comparison”, Solid State Commun 132, 141–149 (2004).
  • [15] S. Koller, L. Mayrhofer, and M. Grifoni, “Spin transport across carbon nanotube quantum dots”, New Journal of Physics 9, 348–384 (2007).
  • [16] R. Melnik and R. Mahapatra, “Coupled effects in quantum dot nanostructures with nonlinear strain and bridging modelling scales”, Computers and Structures 85, 698–711 (2007).
  • [17] M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure”, Phys. Rev. B 52, 11969–11981 (1995).
  • [18] O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k•p theory”, Phys. Rev. B 59, 5688–5701 (1999).
  • [19] H.T. Johnson and L.B. Freund, The influence of strain on confined electronic states in semiconductor quantum structures, Int. J. Sol. Struct. 38, 1045–1062 (2001).
  • [20] F. Gelbard and K.J. Malloy, “Modeling quantum structures with the boundary element method”, J. Comp. Phys. 172, 19–39 (2001).
  • [21] H. Voss, “Numerical calculation of the electronic structure for three-dimensional quantum dots”, Comp. Phys. Communications 174, 441–446 (2006).
  • [22] A. Muc, A. Banaś, and P. Kędziora, “An analytical solution for conical quantum dots”, J. Th. Appl. Mech. 51, 387–392 (2013).
  • [23] C.Y. Wang, Y.Y. Zhang, C.M. Wang, and V.B.C. Tan, J. Nanosci. Nanotechnol. 7, 4221 (2007).
  • [24] A. Muc, “Design and identification methods of effective mechanical properties for carbon nanotubes”, Mat&Design 31, 1671–1675 (2010).
  • [25] V.Z. Vlasov and U.N. Leont’ev “Beams, plates and shells on elastic foundations”, Israel Program for Scientific Translations, Jerusalem, 1966.
  • [26] J. Peng, J. Wu, K.C. Hwang, J. Song, and Y. Huang, “Can a single-wall carbon nanotube be modeled as a thin shell?”, J. Mechanics and Physics of Solids 56, 2213–2224 (2008).
  • [27] J. Wu, J. Peng, K.C. Hwang, J. Song, and Y. Huang, “The intrinsic stiffness of single-wall carbon nanotubes”, Mechanics Research Communications 35, 2–9 (2008).
  • [28] A. Kalamkarov, A. Georgiades, S. Rokkam, V. Veedu, and M. Ghasemi-Nejhad, “Analytical and numerical techniques to predict carbon nanotubes properties”, Int. J. Solids and Structures 43, 6832–6854 (2006).
  • [29] A. Muc, “Modelling of carbon nanotubes behaviour with the use of a thin shell theory”, J. Th. Appl. Mech. 49, 531–540 (2011).
  • [30] A. Muc and M. Chwał, “Vibration control of defects in carbon nanotubes”, Solid Mechanics and Its Applications 30, 239–46 (2011).
  • [31] G. Szefer and D. Jasińska, “Modeling of strains and stresses of material nanostructures”, Bull Pol. Ac.: Tech 57, 41–46 (2009).
  • [32] P. Martyniuk and A. Rogalski, “Insight into performance of quantum dot infrared photodetectors”, Bull. Pol. Ac.: Tech. 57, 103–116 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a66c14ca-b2d9-488a-856b-b870c1c87f34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.