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Eigenproblems in nanomechanics

A. MUC∗ and A. BANAŚ
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Abstract. The paper is semitutorial in nature to make it accessible to readers from a broad range of disciplines. Our particular focus is on
cataloging the known problems in nanomechanics as eigenproblems. Physical insights obtained from both analytical results and numerical
simulations of various researchers (including our own) are also discussed. The paper is organized in two broad sections. In the second
section the attention is focused on the analysis of quantum dots. The analysis of electronic properties of strained semiconductor structures is
reduced here to the solution of a linear boundary value problem (the classical Helmholtz wave equation). In Sec 3, we provide, intermixed
with a literature review, details on various methods and issues in calculation free vibrations/loss of stability for carbon nanotubes. The effect
of various parameters associated with the material anisotropy are addressed. Typically classical continuum mechanics, which is intrinsically
size independent, is employed for calculations.
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Notation:

Latin symbols

A – the beam cross-sectional area,

A11, A22, A12, A66 – the classical in-plane (membrane)
stiffness for orthotropic lami-
nates,

D
γη
αβ – the matrices characterizing the

deformation potential,

E – the Young modulus of the isotrop-
ic beam,

E1, E2, E3 – the Young moduli in the lon-
gitudinal (1), circumferential (2)
and radial (3) directions of the
shell/nanotube, respectively,

Eg,i – the band gap,

F – the stretching force in the beam,

G – the Kirchhoff modulus of the
isotropic beam,

gkl
1 , gkl

2 , gkl
3 , gkl

4 , gkl
5 , gkl

6 – the Luttinger-Kohn parameters,

G12, G13, G23 – the Kirchhoff moduli of the
shell/nanotube,

h – the equivalent shell thickness,

Hαβ – the Hamiltonian function cou-
pling the energy of a charge car-
rier between energy bands α and
β,

I – the beam area moment of inertia,

J – the beam rotary inertia,

Kαβ – the elastic stiffness matrix,

Kgαβ – the geometric stiffness matrix,

k,l – ranges over the four valence sub-
bands referred to 1,2, respective-
ly,

L – the shell/nanotube length,

li – the i-th beam length,

Lkl
αβ (~r) – the matrices of four valence subbands,

M – the bending moment in the beam,

m – the free electron mass,

mα(λE) – the electron effective mass,

n, m – the circumferential and longitudinal
wavenumbers, respectively,

Pi – the momentum matrix element,

qα – the vector of the unknown mechanical re-
sponse of the structure, i.e. the system of
generalized displacements,

~r – the position vector throughout the solid,

R – the cylindrical shell (carbon nanotube) ra-
dius,

V – the interatomic potential,

Vα – the confinement potential,

Vαβ – the effective potential field coupling energy
bands α and β,

Vαβband (~r) – the total potential due to the energy misalign-
ment of the valence band maxima,

Vαβstrain (~r) – the potential due to the elastic strain εγη (~r)
that shifts and couples the energy bands,

x – the fractional content of alloying material.

Greek symbols

δi – the spin-orbit splitting in the valence band,

εγη (~r) – the elastic strain tensor,

θi – the i-th bond angle,

λ – the eigenvalue of the covariance matrix
Σαβ ,

λ = λE – the eigenvalue for quantum mechanics mod-
els (the energy of a particular quantum me-
chanical state),
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λ = λb – the eigenvalue for classical mechanics
models (buckling or free vibrations),

ν12, ν13, ν23 – the Poisson ratios,

ρ – the shell/nanotube density,

Σαβ – the covariance matrix,

Σαβ = Hαβ – for quantum mechanics models,

Σαβ = Kαβ – for continuum mechanics models,

ϕα – the eigenvector of the covariance matrix
Σαβ ,

ϕα = ψα – for quantum mechanics models,

ϕα = qα – for continuum mechanics models,

ψα – the quantum mechanical wave function
associated with energy band β,

ω – the angular velocity,

Ω – the space occupied by the semiconductor,

h – the reduced Planck constant.

Chemical elements

As – aresnic,

Ga – gallium,

In – indium.

1. Introduction

The analysis of the dynamical/acoustic behavior of structures,
vehicles, or molecules in nanomechanics needs the numerical
solution of linear or nonlinear eigenvalue problems (see e.g.
[1–3] for a mathematical introduction). Eigenvalue problems
arise in a wide variety of science and engineering applica-
tions, such as the dynamic analysis of mechanical systems
(where the eigenvalues represent vibrational frequencies), the
linear stability of flows in fluid mechanics or structures in
solid mechanics (buckling problems), the stability analysis of
time-delay systems, and electronic band structure calculations
for photonic crystals. These problems present many mathe-
matical challenges. For some there is a lack of underlying
theory. For others numerical methods struggle to provide any
accuracy or to solve very large problems in a reasonable time.

The trend towards extreme designs (such as in nano/micro-
electromechanical (NEMS/MEMS) devices and superjumbo
jets) means that these nonlinear eigenproblems are often poor-
ly conditioned (hence difficult to solve accurately) while also
having algebraic structure that should be exploited in a numer-
ical method in order to ensure physical meaning of the com-
puted results. The numerical methods are available in (com-
mercial) software. We just buy bigger computers to handle the
higher complexity? In general, we need better mathematical
models, faster and more accurate numerical methods, robust
implementations on modern computer architectures.

The mathematics is well-known and used in industrial
engineering every day – see the description of classical ap-
proaches discussed in Refs [4, 5], such as e.g.: second or-
der Arnoldi method, rational Krylov method, residual itera-
tion method, Newton methods, Rayleigh quotient iterations,
Jacobi-Davidson method, Arnoldi type methods.

In nanomechanics, an eigenproblem can be formulated as:

Σαβϕα = λϕα. (1)

Depending on the assumed formulation, the form and the
physical meaning of the symbols used in Eq. (1) is differ-
ent.

Nanostructured materials have the potential to pro-
vide order-of-magnitude increases in stiffness-to-weight and
strength-to-weight ratios relative to current materials used for
structural engineering applications [6, 7] and for small-scale
devices [8–10]. Since computing nanomechanical responses
requires large systems, computationally affordable but less
accurate classical atomistic treatments of the atomic scale
are widely adopted and only multiscale classical atomistic-
to-continuum bridging is achieved. The possible approaches
can be divided into two groups:

A. Atomistic (quantum-mechanical or molecular dynamic)
approach – determination and analysis of the most stable
atomic structure equivalent to the minimization of many
particle interaction energy,

B. Continuum approach – nanoobjects are represented as
continuum (solid) structures.

However, because of the structure of interest extent over
several micrometers or more in one direction, a full atomistic
treatment is prohibitive. This situation demands new simula-
tion methods and the vision is that nanoscale modeling will
be achieved through a multiscale approach, where the contin-
uum emerges from a precise, quantum mechanical description
of the atomic scale. The first important step to achieve multi-
scale modeling is designing an atomistic scheme to compute
the nanomechanical response with high accuracy. It may be
done in different ways listed below:

• The Schrodinger equation – molecular orbital theory,
• Density functional theory,
• Tight-binding molecular dynamics,
• Classical potentials (Lennard-Jones, Tersoff-Brenner, . . . ).

An accurate atomistic description is highly desirable in
computational nanomechanics. In order to deliver quantita-
tive prediction, suited for the further engineering use, the ac-
curate quantum-mechanical description of chemical bonding
is needed. Furthermore, because the electronic subsystem is
treated explicitly, electronic, optical or piezoelectric proper-
ties can be also derived. Unfortunately, the size range covered
by quantum-mechanical methods (of a few hundred atoms) is
the major impediment for using these methods in nanome-
chanics. This is despite the fact that the size limit increases
rapidly due to parallel computing.

This work does not intend to advance nanomechanics by
trying to enlarge the current computational limit for number of
atoms that can be treated with quantum mechanical accuracy.
Instead, the main idea is to demonstrate the mathematical and
computational similarity arising in solving eigenvalue prob-
lems in nanomechanics to classical continuum mechanics. We
intend to prove that in various problems nanomechanics is
classical mechanics and the differences lies in the scale only
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since meters (or millimeters) are replaced by nanometers on-
ly. Two types of nanostructures are discussed in details, i.e.
quantum dots and carbon nanotubes, and, in this way different
forms of eigenproblems (1).

2. Quantum Dots

In recent decades semiconductor quantum dots (QDs) have
been the subject of many experimental, theoretical and techno-
logical investigations. The broader description of those prob-
lems is presented in Ref. [11]. QDs are tiny dimensionally
confined (typically semiconductor) objects where quantum ef-
fects become obvious, for example, energy spectra become
discrete. Of particular interest is the class of devices that
are composed of combinations of lattice mismatched mate-
rials. These material combinations, such as SixGe1−x/Si and
InxGa1−xAs/GaAs are selected primarily on the basis of their
electronic properties and to some extent for convenience of
processing. Usually, the QD is buried in the host matrix with
differing elastic constants and lattice parameter. Because of
the lattice mismatch, both the QD and host matrix strain and
relax elastically to accommodate this mismatch and thus admit
a state of stress. As is well known, the electronic structure and
the consequent optoelectronic properties of QDs are severely
impacted due to this lattice mismatch induced strain. The host
matrix boundaries do not impact its strain state, if the distance
of the QD from any free boundary is significantly larger than
e.g. the QD radius (typically > 3R).

The conductivity of the semiconductors can be represent-
ed by the energy band of semiconductors. Since the electronic
properties of a semiconductor are dominated by the highest
partially empty band and the lowest partially filled band, it
is often sufficient to only consider those bands. By adopting
this continuum view of confinement in semiconductor quan-
tum devices, the spectrum of confined states available to in-
dividual electrons or holes can be characterized by the steady
state Schrodinger equation, given by:

Hαβ(~r)ψβ(~r) + Vαβ(~r)ψβ(~r) = λEψα(~r). (2)

The form of the Hamiltonian function is directly associated
with the type of semiconductors, and especially with the form
of the energy band. In view of that, we introduce the following
division:

1. One band envelope-function formalism for electrons and
holes in which the effective Hamiltonian is given by:

Hαα =−div

(

~
2

2mα (λE)
gradψα

)

, α= i=1, 2, (3)

where the index i corresponds to the quantum dot (i = 1)
and to the matrix (i = 2), respectively Such a description
is valid for the direct band gap and for instance is valid for
an InAs quantum dot embedded in a GaAs matrix. In the
present analysis the electron effective mass mi is assumed
to be constant on the quantum dot and the matrix for every
fixed energy level λE and is taken as [12]:

1

mi(λE)
=
P 2

i

~2

(

2

λE +Eg,i−Vi

+
1

λE+Eg,i−Vi+δi

)

, (4)

where the confinement potential Vi is piecewise constant,
and Pi, Eg,i and δi are the momentum matrix element,
the band gap, and the spin-orbit splitting in the valence
band for the quantum dot (i=1) and the matrix (i = 2),
respectively. The values of the above constants are given
in Table 1.

Table 1
The material properties of the quantum dot InAs and the matrix GaAs

Pi Eg,i Vi δi

i=1 (QD) InAs 0.8503 0.42 0 0.48

i=2 (matrix) GaAs 0.8878 1.52 0.7 0.34

2. The highest energy valence subbands. This basis consists
of the two degenerate heavy hole subbands and the two
degenerate light hole subbands, in reference to the rela-
tive masses of the charge carriers when treated as classical
particles. The form of the Hamiltonian is given by:

Hαβ = −
~

2

2m0

Lkl
αβ(~r)∇2

kl, α, β, k, l = 1, 2, (5)

where

Lkl
αβ (~r) =







gkl
1

gkl
2

gkl
3

gkl

2
gkl

4
gkl

5

gkl
3

gkl
5

gkl
6






. (6)

This Hamiltonian can be used to model the medium in a
SixGe1−x structure. g1, g2, and g3 are the Luttinger-Kohn
parameters – see Singh [13, 14].

3. A model for spin-dependent transport in the quantum dot
regime of a carbon nanotube is much more complicated as
it may be seen e.g. in Ref. [15]. Those problems are not
discussed herein.

The nonuniform potential field V in Eq. (2) includes all
energetic effects on the charge carrier due to sources other
than the background periodic crystalline potential. The effects
to be considered include the relative offset of the valence band
in adjacent layers of the heterostructure, and the effect of the
elastic strain field. The potential field can be written as the
sum of these two contributions, so that:

Vαβ (~r) = Vαβband (~r) + Vαβstrain (~r) . (7)

The first term in Eq. (7) depends on the form of the semicon-
ductor and is defined by the material constants in the similar
manner as presented in Table 1.

Elastic strain in the structure induces a potential that shifts
and couples the energy bands in the crystal. Based on defor-
mation potential theory, the calculated strain tensor εij (~r) can
be used to generate a potential by means of the operation:

Vαβstrain (~r) = Dξη
αβε

ξη (~r) . (8)

The form of Dξη
αβ is similar to the form of Lξη

αβ given in
Eq. (6) or may be determined with the use of the classical
Eshelby method.

It is worth to mention herein that the relation (8) can be
introduced also in the nonlinear form as proposed e.g. by
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Melnik, Mahapatra [16]. The authors analysed also the influ-
ence of the electromechanical effects on the eigenenergies of
semiconductors.

The weak form of the equation (2) is obtained by forming
the inner product of each term in the equation with the wave
function vector field ψβ and integrating over the volume of
the body. Multiplying (2) by ψα in the Sobolev space H0

1 (Ω)
by parts one gets the variational form of the Schrödinger equa-
tion:
∫

Ω

(

ψα (~r)Hαβ (~r)ψβ (~r) +ψα (~r)Vαβ (~r)ψβ (~r)
)

dΩ

= λE

∫

Ω

ψα (~r)ψβ (~r) dΩ.

(9)

Equation (2) is the Euler equation which results from the re-
quirement that Eq. (9) must be stationary under variations
in ψα. Finally, the solution can be found using the classical
Rayleigh functional. The evaluation of the nonlinear Rayleigh
functional is based on the discretization method of the eigen-
vectors ψα. For one band Hamiltonian (3) the problem (9)
is reduced to the nonlinear eigenvalue problem, whereas for
Hamiltonian defined by Eq. (5) leads to the linear one.

Many of the previous numerical modeling approaches for
these quantum structures used spatial discretization methods,
such as the finite element or finite difference method [17–19].
As an alternative, the boundary element method was proposed
by Geldbard, Malloy [20]. Voss [21] employed the Rayleigh-
Ritz method to solve the nonlinear eigenvalue problem where
the eigenstates of the electron in QDs were derived with the
use of the finite element method incorporated in the MAT-
LAB package. Wavelet bases appear to be attractive as a gen-
eral approach for a wide range of potentials, and not only
for quantum dots. In the mathematical sense the problem is
described by the solution of the Helmholtz equation. Vari-
ous aspects of the evaluation of the eigenenergies in closed
periodic systems of quantum dots were also discussed in the
literature – see e.g. Ref [22].

3. Carbon nanotubes

Buckling, free vibrations or structural instability form a fun-
damental consideration in the mechanics of carbon nanotubes
(CNTs) due to the slender and thin walled nature of their
structure. In the last two decades, intensive studies have been
performed to achieve an in-depth understanding on this issue
[23, 24]. As reviewed in Ref [23], such an investigation was
first focused on the fundamental buckling case of CNTs. The
effect of the interlayer van der Waals (vdW) interaction is
a major issue for the buckling of multiwalled CNTs (MWC-
NTs). The Whitney–Riley model may be used to determine a
spring constant characterizing vdW interaction [25]. It is ob-
served that the effect of matrix on the radial vibration frequen-
cies/buckling loads of MWNTs is dependent on the stiffness
of matrix and the innermost diameter of MWNTs.

The buckling/free vibrations are usually investigated with
the help of three different analytical and numerical models:

• the continuous orthotropic cylindrical shell model,
• the Euler beam model and
• the molecular dynamic model based on the interatomic in-

teractions potentials.

As usual, buckling/free vibrations of a structure is referred
as the change of its equilibrium state from one configuration
to another at a critical, usually, compressive load. For linear
problems the analysis can be reduced to the following eigen-
value problem:

(Kαβ + λbKgαβ) qα = {0} , (10)

where {0} denotes the zero matrix. We do not intend to dwell
on the strict definition of their forms because it is given in the
explicit form, and, on the other hand, their form is directly
connected with the form of the laminated structure (beams,
plates, cylindrical panels). The form is directly equivalent to
the eigenproblem (1).

3.1. Shell/beam model. An explicit expression for the critical
buckling strain/free vibrations can be derived based on cylin-
drical shell models. However, in the literature it is demonstrat-
ed that for small radius of the nanotubes the buckling mode
falls into the regime of Euler beam buckling (R<0.8 [nm])
and then with the increase of the radius the circumferential
modes of buckling (i.e. for n>1) becomes to be dominant.
Therefore the analytical studies are limited to the axisymmet-
ric buckling/vibration analysis only, i.e. n=0 and m>0. For
simply supported cylindrical shells made of a specially or-
thotropic material the eigenfrequencies can be easily derived
in the analytical way using the Rayleigh-Ritz method as the
roots of the following equation:

χ3

b + b0χ
2

b + c0χb − d0 = 0, (11)

where

b0 = −a11 − a22 − a33,

c0 = a11a22 + a11a33 + a22a33 − a2

13,

d0 = a11a22a33 − a22a
2

13, a11 = ζ2m,

a22 =
A66

A11

ζ2m, a33 =
A22

A11

+
h2

12R2
ζ4m,

a13 = −
A12

A11

ζm, ζm =
mπR

L
,

χb = ρR2hω2/A11.

(12)

The roots of Eq. (2) can be represented as follows:

χb1 = a22,

χb2,3 =
1

2

(

a11+a33±
√

a2
11

+4a2
13
−2a11a33+a2

33

)

.
(13)

If the carbon nanotube arrays are assumed to be transverse-
ly isotropic the material properties in the circumferential and
thickness directions are identical. However, the twisted array
SWCN is a helical array then, in fact, the nanotube does not
possesses completely transversely isotropic properties. There-
fore five material constants are necessary to characterize the
CNT array behavior. The values of constants take the fol-
lowing form: E1 = 580 [GPa], E2 = E3 = 9.4 [GPa],
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ν12 = ν13 = 0.18, ν23 = 0.90, G12 = G13 = 17.2 [GPa],
G23 = 2.47 [GPa]. In addition let us assume ρ = 600 [kg/m3]
and L = 29.5 [nm].

Thus, for χb = 1 the square root of the ratio A11/(ρhR2)
is equal to 6.55 [THz] (n1 = n2 = 5) and is the multiplier of
natural frequencies – Eq. (3). As it may be seen the magni-
tude of natural frequencies (THz) is in the range mentioned
in the literature. For (n1 = 5, n2 = 5) carbon nanotubes the
radius R = 0.339 [nm] the parameter ζm = 0.0314∗m and it
is treated as negligibly small. Since all membrane stiffnesses
Aii are proportional to the thickness parameter h so that that
constant can be omitted in the further considerations. Figure 1
demonstrates the comparison of the values of the frequencies
described by Eqs. (12) and the value corresponding to the
Euler beam model which is given by the relation:

χbEuler =

(

mπ
h

L

)2

ζ2m. (14)

In Fig. 1 the x-axis corresponds to the value ζ2m and the y-axis
represents the value χb/ζ

2

m. As it may be easily noticed from
the relations (11) the first shell mode is constant and equal
to a22/ζ

2

m, the second – a33/ζ
2

m and the third (not plotted in
Fig. 1) is equal to a11/ζ

2

m so that is equal to 1. It is necessary
to emphasize that the above formulas are the approximations
only for the second and the third modes but they are satisfac-
tory for the present numerical data. In the second shell mode
and in the Euler beam model the shell thickness h is equal
to 0.34 [nm]. In the plot the first shell mode corresponds to
the lowest frequency. It is worth to mention also that in the
literature the frequencies are usually compared with values
obtained with the use of the Euler beam model. However, the
use of the shell model allows us to predict lower value but
the relation between those values is strongly dependent on
the assumed CNT length L. For higher values the Euler value
can be lower than that corresponding to the application of the
shell model.

Fig. 1. Comparison of vibrational frequencies for different models

Continuum cylindrical shell models have been widely ap-
plied in the buckling/free vibration analysis of carbon nan-
otubes. Using the cylindrical models it is possible to evaluate
buckling loads/free vibrations of cylindrical shells, analyze

their post-buckling behaviour etc. employing the methods of
analysis well-known for eigenvalue shell problems. In this
way it is possible to describe the behaviour of equivalent car-
bon single-walled or multi-walled carbon nanotubes. Howev-
er, there is always an open question dealing with the accuracy
and correctness of such approaches.

Peng et al. [26] determined the order of error for approx-
imating the single-walled carbon nanotubes by a thin shell.
The ratio of atomic spacing r0 to the single-walled carbon
nanotubes radius R, is used to identify the order of error.
They considered the structural response of the single-walled
carbon nanotubes subject to tension (or compression), torsion,
bending and internal (or external) pressure. They proved that
only for the order of error equal to 40% – (5,5) armchair
single walled carbon nanotubes can be modeled as thin shell
with a constant thickness and isotropic mechanical properties.

The extensions of the above results have been present-
ed by Wu et al. [27]. The authors have defined the degrees
of: anisotropy, nonlinearity and coupling, i.e., down to what
single-walled carbon nanotubes radius the tension/bending
coupling becomes negligible in the constitutive relations.

Numerical modeling of single-walled carbon nanotubes
constitutes the separate class of problems. Some of them are
discussed by Kalmakarov et al. [28]. The cited work presents
also the comparison of Young’s modulus and the equivalent
thickness predicted with the use of various theories.

The broader discussion of those problems can be found
in Ref. [29]. Muc et al. [11, 30] demonstrated also the ef-
fectiveness of the shell models in the identification of defects
occurring in the CNTs.

3.2. Molecular dynamic model. Let us consider that the
hexagon, which is the constitutional element of CNTs nano-
structure, is simulated as structural element of a space-frame
made of 3D beams. Of course, in the same way the entire
nanotube lattice may be modelled. The simulation leads to
the correspondence of the bond length C-C with the 3D beam
element length L and with the element diameter d characteriz-
ing a circular cross-sectional area for the element. The linkage
between molecular and continuum mechanics can be made by
an appropriate definition of 3D beam mechanical properties.

Based on the energy equivalence between local potential
energies in computational chemistry and elemental strain en-
ergies in structural mechanics, we can determine the tensile
resistance, the flexural rigidity and the torsional stiffness for
an equivalent beam. If the beam element is assumed to be
of round section, then only three stiffness parameters, i.e., the
tensile resistance EA, the flexural rigidity EI and the torsional
stiffness GJ, need to be determined for deformation analysis.
By considering the energy equivalence, a direct relationship
between the structural mechanics parameters and the molec-
ular mechanics force field constants can be established:

EiAi

li
= kri,

EiIi
li

= kθi,
GiJ i

li
= kti, (15)

where kri, kθi and kti are the force field constants in molec-
ular mechanics. They are indexed by the number of the beam
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occurring in the RVE for a given nanotube structure. For
zigzag and armchair configurations the RVE are plotted in
Fig. 2.

Fig. 2. Representative volume elements of an a) armchair CNT and
b) zigzag CNT

Let us note that the present formulation incorporates spe-
cial features of molecular mechanics models. In addition, it
allows to analyze large deformations of CNTs since the beam
length L in Eq. (14) is replaced by an actual beam length li
different for different i-th beams in the RVE.

By comparing energies of the mechanical and molecular
diatomic systems the force constants kri, kθi can be derived.
Using the interatomic potentials, the stretching force that re-
sults from the bond elongation ∆li and the twisting moment
that results from the bond angle variation ∆θi can be calcu-
lated as follows:

F (∆li) =
∂V

∂li
, M (∆θi) =

∂V

∂θi

,

∆li = li − l0i, ∆θi = θi − θ0i, i = 1, 2.

(16)

The derivatives in Eq. (15) are expanded in the Taylor series
up to the first derivative (linear terms) only. However, the ini-
tial values r0i and θ0i are modified at each iteration step since,
in fact, both the stretching forces and the twisting moments
are nonlinear with respect to the bond length and to the bond
angle, respectively.

By assuming a circular beam section with diameter di,
and setting Ai = πd2/4, Ii = πd4/64, Eqs. (14,15) give:

di = 4

√

kθi

kri

, Ei =
k2

rili
4πkθi

. (17)

Then, following the procedure of the finite element structural
mechanics technique, the nanotube deformation under certain
loading conditions can be readily solved. It is worth to note
that Young’s moduli E1 and E2 are different even for the lin-
ear part of the stress-strain curve since the beam lengths ri
are different at each iteration step, and the force constants kri

and kθi are nonlinear functions of r and θ, respectively, as the
second derivatives of the interatomic potential.

The numerical space-frame model of carbon nanotubes
is presented in Fig.3. One of the ends of the tube is simply
supported, whereas at the second the symmetry conditions
are imposed. The carbon nanotubes remain cylindrical until
the critical eigenfrequency is reached at which point they de-
form in the longitudinal direction (i.e. n = 0). The half of

nanotubes is modeled only due to symmetric boundary con-
ditions. The natural frequencies have been obtained with the
use of the NISA FE package.

Fig. 3. Numerical space-frame model of the (5,5) carbon nanotube

The carbon nanotubes remain cylindrical until the criti-
cal eigenfrequency is reached at which point they deform in
the longitudinal direction. Figure 4 is a plot of some typi-
cal modes of deformations for the first natural frequency The
magnitude of natural frequencies (THz) is in the range men-
tioned in the literature.

Fig. 4. Mode I – frequency = 3.472 THz (deformations not to scale)

3.3. Quantum mechanics. The quantum mechanics ap-
proach is an approximate solution of the Schrodinger-like
equation. The analysis starts from solving the one-electron
Schrödinger equation in the form given by Eq. (2) where
α = β = 1. This equation is solved with the ansatz that the
single electron states can be represented in terms of atomic
orbitals located on each single atom. The number of atomic
orbitals n is usually taken equal with the number of valence
electrons for the atomic species (for example n = 4 for car-
bon). Let Nt (usually a large number) the number of trans-
lational cells (for instance in the form presented in Fig. 2)
over which periodic boundary condition are imposed and let
N be the number of atoms in each cell. If no explicit re-
course to translational symmetry is made, the one-electron
eigenfunctions ψ are represented in terms of localized or-
bitals functions and expansion coefficients. The expansion
coefficients grouped in the vector should be obtained from
the one-electron generalized N × N (N = nNtN ) eigen-
value problem. which can be easily obtained by substitut-
ing the one-electron eigenfunctions ψ are representations (in
terms of localized orbitals functions and expansion coeffi-
cients) into Eq. (2) that finally forms the matrix form of the
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Schrödinger equation. In such an equation (the NxN eigen-
value problem) the N electronic state levels appear. It cannot
be solved directly. The usual approach is to introduce a sig-
nificant computational simplification by explicitly accounting
for the translational symmetry. For large N it leads to dense
solutions of large sparse problems. The number of states cor-
responds directly to the length of nanotubes. For such a class
of eigenproblems Lanczos shift-and-invert method is preferred
in most practical cases. In addition, clustering eigenvalues are
transformed to well-separated eigenvalues. In this way it is
possible to find more energetically favorable nanostructures
and therefore more likely to be stable.

4. Concluding remarks

In this contribution, we analyzed fundamental approaches in
bridging the scales in mathematical models for the descrip-
tion of various problems encountered in nanomechanics, es-
pecially for such nanostructures as quantum dots and carbon
nanotubes. We demonstrated that the variety of eigenprob-
lems well-known in the classical mathematics for computing
the energy levels and the wave functions can be easily adopt-
ed in solving different problems existing in the analysis of
nanostructures behaviour.

However, several avenues of research remain open and in-
adequately addressed. We highlight some of our own personal
perspectives here. More information about those problems can
be found e.g. in Refs. [31, 32].
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