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ABSTRACT: Determination of ship maneuvering models is a tough task of ship maneuverability prediction.
Among several prime approaches of estimating ship maneuvering models, system identification combined with
the full-scale or free- running model test is preferred. In this contribution, real-time system identification
programs using recursive identification method, such as the recursive least square method (RLS), are exerted
for on-line identification of ship maneuvering models. However, this method seriously depends on the objects
of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support
vector machines (SVM), is firstly used to estimate initial values of the identified parameters with finite samples.
As real measured motion data of the Mariner class ship always involve noise from sensors and external
disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet
method and empirical mode decomposition (EMD) are used to filter the data corrupted by noise, respectively.
The choice of the sample number for SVM to decide initial values of identified parameters is extensively
discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship
maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between
identification results and true values of parameters demonstrates that both the identified ship maneuvering
models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the
increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data
de-noised by EMD shows the highest accuracy and best convergence.

1 INTRODUCTION The main methods for estimating the maneuvering
model include towing-tank experiments, captive
model experiments (Skjetne et al. 2004),
computational fluid dynamics (CFD) and system
identification combined with the full-scale or free-
running model (Xu et al. 2014). The last is becoming

an attractive and cost-effective tool for estimation of

Since International Maritime Organization (IMO)
clearly  presents standards for the  ship
maneuverability to ensure ship navigation safety, the
prediction of ship maneuverability has become a vital
and attractive issue. The system based maneuvering

simulation has been proved as an effective and
economic way to predict the ship maneuverability.
One of the preconditions is the estimation of
maneuvering models. To a high degree, the accuracy
of the estimation guarantees the effectiveness of
prediction of the maneuvering model.

ship maneuvering models.

System identification is a very broad topic with
different techniques that depend on the character of
models to be estimated: linear, nonlinear, hybrid,
nonparametric, etc.  (Ljung  2010). Various
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conventional system identification methods, such as
least squares method (LS), maximum likelihood
method (ML) and extended Kalman filter (EKF), have
been successfully applied to estimate the ship-
maneuvering model. For instance, Xu et al. (Xu et al.
2014) incorporated LS with integral sample structure
and Euler method to identify the linear
hydrodynamic model in the horizontal plane of an
underwater vehicle using simulated data. Astrom and
Kallstrom (Astrom & Kallstrom 1976) applied ML to
determine steering dynamics of a freighter and a
tanker using free steering experiments on full-scale
ships. ~ Shi et al. (Shi et al. 2009) tackled
identification of a non-linear ship maneuvering model
based on EKF. This method was also used by Perera
et al. (Perera et al. 2015) to identify the stochastic
parameters of a nonlinear ocean vessel steering
model. In recent years, a variety of novel methods
based on the modern artificial intelligent technology,
such as the artificial neural network (ANN), genetic
algorithm (GA) and support vector machines (SVM),
have been used successfully in the parameter
identification of the ship maneuvering model. ANN
was used by Rajesh and Bhattacharyya (Rajesh et al.
2008) to deal with system identification of a nonlinear
maneuvering model for large tankers. Sutulo and
Guedes Soares (Sutulo & Guedes Soares 2014)
developed an identification method based on the
classic genetic algorithm to estimate a mathematical
model describing the ship maneuverability by using
simulation data corrupted by the white noise of
various levels. Comparatively, SVM directs at finite
samples, which requires no initial estimation of
parameters but has good generalization performances
and global optimal (Luo & Cai 2014). In 2009, Luo and
Zou (Luo & Zou 2009) firstly successively applied
SVM to identify hydrodynamic derivatives of
Abkowitz model from the free-running model test,
and predicted zigzag tests using the regressive
Abkowitz model. Other studies can be found from the
research group guided by Zou (Zhang et al. 2013 &
Zhang et al. 2011 & Xu et al. 2012 & Wang et al. 2013)
and references therein.

In such a variety of identification methods, some
are developed to on-line identify time-varying
coefficients, for instance, recursive least square
method (RLS) algorithm and least mean squares
(LMS) algorithm (Ljung 2002). Since the change of
current weather and ship loading conditions can
cause parameter variations of ship maneuvering
models, the well-known RLS with an advantage of
simple construction is used in this paper to identify
parameters of ship maneuvering models.

As well known, the identification results of RLS
are sensitive to the initial values of parameters (Zhang
et al. 2013). Hence, this contribution aims at
conquering such drawback of RLS by benefiting from
applying firstly SVM which is a kind of batch
identification technique and requires no initial
estimation of the parameters, to provide RLS initial
values. Additionally, this paper makes an effort to
analyze the choice of the training sample number
applied for SVM to identify initial values of ship
maneuvering models.

The data for learning and validation of
identification procedure are obtained from simulation
of ship maneuvering models combined with existing
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particulars. For consideration of real navigation
situation influenced by different disturbances, such as
wind, wave and currents, the simulation test data are
corrupted by non-correlated white noise, i.e.,
Gaussian white noise. Then, two different filters,
namely, Wavelet filters (Barford 1992) and Empirical
Mode Decomposition (EMD) algorithm (Wang et al.
2014) are used to omit negative influence of external
disturbances on identification results.

The paper is organized as follows. In section 2, the
mathematical model of ship maneuvering is
described. The identification methods including RLS
and SVM are introduced in section 3. The
implementation of ship maneuvering models’
identification is conducted and the identification
results are analyzed in section 4. Finally, the
conclusion of the work is summarized in section 5.

2 THE MATHEMATICAL MODEL OF SHIP
MANEUVERING

Ship dynamics are complex due to nonlinear and
coupling characteristics. At present, three types of
mathematical model of ship maneuvering are
common. MMG model is modular model separately
describing rudder effects and propeller effects.
Abkowitz model is whole-ship model regarding
influences on the ship as the whole using Taylor
series expansion. The response model, particularly, is
the Nomoto models (Fossen 2011). In this study, the
problem of determining ship steering dynamics is
focused from the point of view of parameter
identification. Assuming that the ship forward speed
is constant (U, ), the steering dynamics of a surface
ship can be described as (Astrom & Kallstrom 1976)
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where m’ is the non-dimensional mass of the ship;

Xg is the non-dimensional longitude coordinate of the
ship’s center of gravity; |, is the non-dimensional
ineria moment about 7 -axis; V, I' are non-
dimensional small perturbations respectlve}}y Vis the
non-dimensional sway linear velocity; w',I are non-
dimensional yaw rate; y' is the non-dimensional
heading, angle; 6 is the rudder angle; Yy ,Y¢ ,Ys,
v, Yr are respective hydrodynamic coefficients of
the sway motion; Ny, N¢* Ns, Ny, N are respective
hydrodynamic coefficients of the yaw motion, and
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The normalized equations of motion, i.e., Eq.(1),
are easily converted to standard state space notation



by solving for the derivatives V' and I, which is
given as
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where the parameters are expressed respectively by
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Rewriting the state variables of Eq.(2) with
dimensional format, it can be given as
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3 IDENTIFICATION METHOD

3.1 LS-SVM Method

With several years’ application of SVM, it has been
proved that it can also be designed to deal with sparse
data in the condition of many variables but few data
(Vapnik 2000). LS-SVM is the one modified form of
SVM, which has the ability to simultaneously
minimize the estimation error in the training data (the
empirical risk) and the model complexity (the
structural risk) for both regression and classification.
Consider a model in the primal weight space

V) = @ () +b(xeR",y e R) (4)

where x is the input data; Y is the output data; b
is a bias term for the regression model; « is a matrix
of weights; and ¢(.): R—RM™ is the mapping to a
high-dimensional Hilbert space, the np can be
infinite. The optimization problem in the primal
weight space for a given training set {x;,y; }iNzﬁ with
Ns as the number of samples becomes

N
1 1'S
min J(a),e):fa)TaHCf Y ¢ (5)
whe 2 2z
subject to
T
Y=o o(x)+b+e (6)

where g is regression error; C is the penalty factor
with positive values.

In the case of @ becoming infinite dimensional,
the problem in the primal weight space cannot be
solved. The Lagrangian is computed to derive the
dual problem
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where o (i=1,---,N_) are the Lagrange multipliers.
Now the derivatives with respect to w,b,e. , and a;
are computed and set to be zero, respectivefy
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After straightforward computations, variables «
and e are eliminated from Eq.(8). Then the kernel
trick is applied. The kernel trick allows us to work in
large dimensional feature spaces without explicit
computations on them. Therefore, the problem
formulation yields

Ns
y(x) = El aiK(x,%)+b )

where K(x,Xj) represents the kernel function. For the
problem of parameter identification, the linear kernel
function is usually adopted, ie. K(x, x.)=(x-x.l) ,
because the identification equation of the steering
model is linear with respect to identification
parameters. So the identified parameters 6 can be
regressed by using linear kernel based on LS-SVM,
the regression model is

Ng
0= 2 ax
i=1

(10)

3.2 RLS method

Considering the limitation of space, RLS is briefly
introduced. RLS is developed for on-line parametric
identification based on off-line method, LS. Given a
system organized with a linear regression form using
a model parameter vector6, a lagged input-output
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data vector x@=ix"'a) K@) .. X
unspecified noise process V(K) as follows

, and an

vk = X T ()8 +v(K) (11)

Then, parameters 6 are estimated using RLS as
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4 PARAMETRIC IDENTIFICATION BY SVM-RLS

4.1 Construction of Samples

The continuous Eq.(3) is discretized using Euler
forward method. Its difference form can be expressed
as
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where k+l and K denote two successive sampling
times, At is the sampling interval. Then the input-
output pairs are used for SVM and RLS to identify the
parameters in Eq.(13).

The inputs are expressed as

= [v(k).v(K)U (k). (k) (), 50U 2 (KT, (14a)

Z = [r(k). (kU (), r (U (), 500U % (T (14b)

Let B=[l by by b3ljx4, C=[1 ¢f ¢ c3]ix4, then the
outputs are v(k+1)=BY , r(k+1)=CZ .

Once the parameters of B and C are obtained
through identification algorithms, the parameters of
the state space model (Eq.(2)) can be achieved
immediately, namely,

_bL b b _bsL
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4.2 Data Preprocessing

The data used for learning and validation of
parametric identification of the ship steering model
are generated by synergistically employing forth-
order Runge-Kutta algorithm and Eq.(3) with
parameters extracted from the study in (Astrom &
Kallstrom 1976). The ship parameters are shown in
Table 1.
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Table 1. The parameters of Merchant ship Mariner class

Mariner
Length L (m) 161 Speed u,(m/s) 7.7
a, -0.693 a,, -3.41
a, -0.304 a,, -2.17
b, 0.207 b,, -1.63

The Runge-Kutta algorithm is represented as

% = f(x,5) (15)
kl = f(Xn’ n)
h
kz = f(Xn +7k17§n+1/2)
2 (16)
k =f(x,+- kz’ hi1/2)
k4 - f(Xn +hk37 n+1)
h
Xn+1:Xn+€(k1+2k2+2k3+k4) (17)

where n donates time series; kj(i=1,2,3,4) represents
the intermediate variable; is the sampling
interval; xHv,rw] is the state vector; and
on+1/2=(Sn+on+1)/2 .

Two groups of zigzag simulation tests, that are
20°/20° for identifying parameters and 10°/10° for
validation, are derived with initial states including
the forward speed of 7.7m/s, the rudder ang}% of 0°
, the heading angle of 0°, the yaw rate of 0 , and
the sway speed of 0m/s .The sampling time is 1000s,
and the interval is 0.5s. 2000 measurement pairs of V ,
r , 0 , and resultant speed U are recorded for
parameter identification of the steering model. The
simulation results are illustrated in Fig.1.

Simulation of 20°/20° zigzag test

ulation data
Simula data with noise
5 T T T : T r — -3 — Denoised data by wavelet |—
Denoised data by EMD

L L L L L
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Figure 1. Comparison of training data of the 20°/20°
zigzag test

As the real data of ship maneuvering will be
inevitably corrupted by measurement noise and
environmental disturbances which are generally
considered as Gaussian white noise assumed to be
independent one with zero means, the original
simulation data are corrupted by Gaussian white
noise. Then the data are de-noised by filters. In
order to effectively analyze the influence from de-
noised data by different filters on the accuracy of



identification results, wavelet filters and EMD are
resorted, respectively. The comparison between the
original simulation data, the simulation data
corrupted by Gaussian white noise, and de-noised
data by respective wavelet and EMD are presented in
Fig.1.

4.3 Selection of Sample Number for SVM

LS-SVM as a batch technique avoids lengthy iteration
and needs no initial estimation of parameters.
However, it can be seen that the problem of applying
LS-SVM is the choice of the number of samples. The
solution of such problem is proposed by analyzing
the convergence of LS-SVM used with different
numbers of samples. The samples are selected from
original simulation test data, the number varies from
10 with the interval of 10 to 2000. The identification
results of different numbers of samples are shown in
Fig.2 where the wupperright one is identified
parameters of the steering model and the down-right
one is a partially enlarged view. Additionally, the

Table 2. Identified values of steering model

upper-left one indicates the relative error of each
parameter between identification results and true
values, and the down-left one represents a partially
enlarged view. Obviously, all parameters match well
with true values while the sample number increases
to around 80. Considering that the training data are
corrupted by noise, the samples used for LS-SVM is
160 that means the 80s.
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Figure 2. The identification results of different numbers of
samples

Parameters True value = RLS(Wavelet algorithm) RLS(EMD) LSSVM-RLS(EMDé&160)
Identified Relative Identified Relative Identified Relative
value error value error value error

a, -0.693 -2.5808 2.2738 -0.7665 0.1061 -0.7140 0.0303

a, -0.304 -0.9821 2.2306 -0.2835 -0.0674 -0.2949 -0.0299

b, 0.207 0.1972 -0.0473 0.1987 -0.0401 0.1904 -0.0802

a,, -3.41 0.3409 -4.0691 -3.1485 -0.0767 -3.2232 -0.0548

a,, -2.17 -3.5498 0.6359 -2.2424 0.0334 -2.1846 0.0067

b,, -1.63 -1.4722 -0.0968 -1.4996 -0.08 -1.5159 -0.07
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Figure 3. Comparison between true and identified parameters
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4.4 Identification Results

For the purpose of clearly showing the identification
results of the steering model, the former 500s results
are selected and presented in Fig.3, because most
parameters converge well after 150s except for byj.
The identified values of the steering model by
different identification methods are listed in Table 2.
It is obvious that the identification results from using
de-noised data by EMD are more precise than the
ones from Wavelet algorithm. Both the estimated
values of the steering model by RLS and LSSVM-RLS
converge well into the true values.

Comparatively, the identified values from LSSVM-
RLS have higher accuracy, in particular ajp,a1,bp1,
because the initial values of those parameters
provided by LSSVM are close to true values.
Additionally, LSSVM-RLS shows better convergence
performance. It is deserving to note that the identified
value of bj; by LSSVM-RLS is worse than RLS. This
may be attributed to two aspects. Firstly, under
conditions of training data corrupted by noise even
filtered, LSSVM still needs more data samples to
achieve accurate values of parameters. Secondly, the
difference between the initial value of b1 applied to
identification algorithms and true value has an
impact. The initial value of by set for RLS is closer to
the true value than the one obtained from LSSVM.

4.5 Prediction and Verification

Verification of identification results is the essential
procedure for parameter identification. Hence, a
10°/10° zigzag test is predicted by using the identified
steering model. As presented in Fig4, the
comparison between predicted data and original
simulation data indicates that the identified steering
model has a satisfied agreement with the real model,
which illustrates that the identification method
preforms good generalization.

ey
Prediction 1 ()
————— Original ¥ (*)
Prediction v (mis)
Original v (mis)
Predition r (°/s)
Original r (*/s)

20 i L L i L L 1 |
0 100 200 300 400 500 600 700 800 900 1000

time (s)

Figure 4. Prediction and comparison of the 10°/10° zigzag
test

5 CONCLUSION

In this paper, we have developed a solution to
overcome the problem of initial value definition for
parameter identification in linear ship dynamic
models using recursive least squares (RLS) approach.
For the definition of the parameters, we combined
LSSVM with an RLS algorithm. To show the benefit of
this approach, we have executed a zig-zag simulation
based evaluation, in which we added Gausssian noise
calculated by signal ration proportional approach to
generate realistic training and validation data. To
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filter the noise we used a wavelet algorithm and an
empirical mode decomposition (EMD) for the RLS
approach, and EMD for the LSSVM approach. We
have shown that our LSSVM-RLS approach for
parameter identification is suitable and for most
parameters even better than the RLS-only approach
with predefined initial values. We also have shown
that EMD filtering provides better results for de-
noising data.

Forthcoming work will focus on expanding the
application of the proposed parameter identification
method to the nonlinear identification algorithm, such
as Extend Kalman filter algorithm, for the nonlinear
ship maneuvering model. The further points worthy
of attention will be data acquisition through
extracting from real ship navigation motions recorded
by navigation devices mounted in ship body, and the
data filtering.
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