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Abstrat. In this study we presented an algorithm for an unonstrained optimiza-

tion of a ontinuous objetive funtion, inspired by the Di�usion Monte Carlo method

using a weight-based implementation. In this algorithm a loud of replias explores

the solution spae. Replias are moved and evaluated after eah step. Eah replia

arries an additional parameter (weight) whih re�ets the quality of its loal so-

lution. This parameter is updated after eah step. Most ine�ient replias, i.e.

replias with the lowest weights, are oasionally replaed with their highest weight

ounterparts. In our study we present the basi implementation of the algorithm

and ompare its performane with other approahes, inluding the previously used

implementation of DMC algorithm with a �utuating population.

1. Introdution

Finding a global minimum of a nontrivial multidimensional funtion is a hal-

lenging problem in many areas of siene and engineering [1, 2℄. Many of

these problems belong to the lass of NP-hard problems, whih make them

extremely di�ult to solve � exept for a relatively small and simple ases.

There is a large number of algorithms for solving various types of global

minimum problems (GOP), unfortunately there is no generi algorithm whih

an be applied to a wide seletion of GOP. Most of the algorithms rely on

the spei� harateristis of the optimized funtion, although there are also

more general methods, e.g. geneti algorithms [3℄, and other evolutionary

approahes [4℄.
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In our study we present a di�erent approah to the global minimum prob-

lem, inspired by the Di�usion Monte Carlo method [5, 6℄ used in quantum

physis and hemistry. We have already used a di�erent implementation of

this algorithm in other studies [7�10℄ with a promising results.

In this paper we present a weight-based implementation of the DMC op-

timization sheme and ompare it with the algorithm used in the previous

study.

In the next setions we disuss the details of the algorithm, show the e�-

ieny of both approahes on a set of simple problems, and disuss the strong

and weak points of both shemes.

2. Methodology

The DMC algorithm is often used in omputational physis and hemistry to

solve numerially a time dependent Shrödinger equation by a random walk of

a loud of replias of a quantum system. Based on the weights distribution of

replias, the approximate wave-funtion of the system an be obtained. Two

implementations of the algorithms are used. One, suggested by Anderson [5℄,

involves the modi�ations of the population size (kill/lone proess). Another

approah, used by Suhm and Watts [6℄, uses ontinuous weighting method.

In this study we applied the Suhm and Watts implementation of the DMC

algorithm. The following proedure was used in our simulations:

Initialize population. The initial population of replias is randomly

generated. Eah replia represents a possible solution (i.e. the vetor of

objetive funtion variables). The size of the population Nrep is an empirial

parameter and depends on the problem. The additional parameter (weight)

is assigned to eah replia. The usual value of the initial weight is 1
Nrep

.

Move replias. Eah replia is moved randomly with displaement ∆x
generated from the Gaussian distribution with µ = 0 and σ depending on the

problem:

xn+1 = xn + ∆x. (1)

Calulate objetive funtion values and modify weights. The ob-

jetive funtion value is alulated for eah replia. The weight (wi) of eah

replia is then modi�ed aording to Eq. 2, where fi is the objetive funtion

value of the replia i, f̄ is the mean value alulated over the total population,

τ is the empirial parameter, and n is the step number,

wi,n+1 = wi,n exp [−(fi − f̄)τ ]. (2)
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After the modi�ation, weights of all replias are renormalized to avoid nu-

merial errors (under�ows or over�ows).

Exhange replias. During the simulation, some replias explore regions

of the solution spae with high objetive funtion values. To avoid the un-

neessary omputations, these replias are oasionally removed. Eah time

the replia is removed from the population, the replia with the largest weight

is loned and the weight is divided between both opies. This proedure

eliminates worst solutions while keeping the population size onstant.

Chek for stopping riteria. In our study we use a �xed number of

steps, although other riteria an also be used.

In our study we use two test funtions, namely Akley's problem in

N-dimensions [11℄ and Griewangk's problem [12℄. Akley's problem is a mul-

timodal, non-separable, di�erentiable and salable funtion de�ned as:

F (�x) = −20 · exp
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where �x = {x1, x2, . . . , xN}, and xi ∈ (−32.768, 32.768). It has a known

optimal solution for �x = {0, 0, . . . , 0}, and F (�x) = 0.
Griewangk's problem is also a multimodal, non-separable, di�erentiable

and salable funtion de�ned as:
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where �x = {x1, x2, . . . , xN}, and xi ∈ (−600, 600). It has a known optimal

solution for �x = {0, 0, . . . , 0}, and F (�x) = 0.
In our study we performed two sets of tests for eah funtion, using the

number of dimensions Ndim = 5 and Ndim = 20, respetively. For eah test we

performed DMC simulations using the randomly generated initial population

of Nrep = 100 replias, and the �xed number of steps, Nsteps = 1000. The

empirial parameter τ was set as 0.5 in all the DMC runs, and the value

of σ was equal to 0.5 for Akley's problem and 5.0 for Griewangk's one (to

aount for its larger solution spae). After eah step 10% of the population

was replaed.

The values of the simulation parameters were based on the eduated guess

based on results from [8℄, although we are aware that these values may not be

optimal for our test funtions.
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For a referene, we used results from a blind searh, simple random walk,

and the DMC approah based on variable population size � DMC-VP (the

details of this method an be found in [10℄). In the �rst method, Nrep random

solution andidates in eah of the Nsteps steps are generated and evaluated.

In the seond one, replias are moved randomly aording to the Gaussian

distribution with a given σ value, but without the modi�ation of the popu-

lation. In order to better ompare both DMC approahes, we used the same

simulation parameters in both DMC runs.

The omputational ost of all approahes is similar, therefore their perfor-

mane an be diretly ompared.

All experiments were repeated three times to remove possible artifats.

Eah time, the di�erent initial population was used for random walk and DMC

runs. The averaged values from these experiments were used for omparison

of the algorithms e�ieny.

3. Results and disussion

Results of the simulations are shown in Table 1. The values finit are the best

solutions from the initial (randomly generated) populations. In the ase of the

blind searh, eah sampling is independent and therefore the initial solution

is de�ned as the result of �rst Nrep samples. The values of fbest are the best

solutions found during the simulation. The value fbest/finit gives the fator,

by whih the initial solution was improved during the simulation. All the

values in Table 1 are averaged over three independent runs.

Table 1: Simulation results.

Test funtion: Akley's Griewangk's

Ndim = 5

Method finit fbest
fbest

finit

finit fbest
fbest

finit

Blind searh

18.09

6.99 0.386

31.01

2.10 0.068

Random walk 11.27 0.623 18.39 0.593

DMC-VP 0.59 0.033 0.19 0.006

DMC-CW 0.66 0.036 0.12 0.004

Ndim = 20

Method finit fbest
fbest

finit
finit fbest

fbest

finit

Blind searh

20.40

18.78 0.921

315.22

161.19 0.511

Random walk 19.44 0.953 292.42 0.928

DMC-VP 4.66 0.228 1.31 0.004

DMC-CW 3.92 0.192 1.19 0.004
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The results obtained from both DMC-VP and DMC-CW simulation learly

outperform other approahes. In the ase of Griewangk's problem the improve-

ment of the initial solution is very good for both Ndim = 5 and Ndim = 20
ases, while for blind searh and random walk the e�ieny is not only muh

worse, but it also deteriorates for a larger problem size. There is no signi�-

ant di�erene between DMC-VP and DMC-CW results, both algorithm give

similar results.

Akley's problem seems to be more hallenging for all algorithms. The

improvement for DMC is not as good as in the previous ase, espeially for

Ndim = 20, where the fator of the solution improvement is only 0.2. Nev-

ertheless, the e�ieny of both DMC algorithms is muh better than other

methods, e.g. for Ndim = 20 both random walk and blind searh were able to

redue the initial solution by less than 10%. Both DMC-VP and DMC-CW

runs give similar results, although DMC-CW is slightly better for Ndim = 20.

From the e�ieny point of view, both DMC algorithms give similar results.

However, the DMC-CW approah has several advantages over the DMC-VP.

The �xed size of the population is easier to implement and handle in the

omputer storage (stati vs. dynami). The DMC-VP population size an

drastially hange (population explosion or annihilation) if inorret parame-

ters are used. The DMC-CW does not use random number generator in the

modi�ation phase, reduing the possible error from the low quality random

numbers (although random numbers are still used for moving replias).

Unfortunately, there are also several disadvantages of the DMC-CW sheme:

The range of weights inreases very fast and must be normalized to avoid

over�ows and under�ows. Some replaement strategy must be used to remove

ine�ient replias without inhibiting the exploration proess.

4. Conlusions

In this study we have presented a new global optimization approah based

on the Di�usion Monte Carlo method with ontinuous weighting (DMC-CW).

We have shown that performane of this algorithm is similar to the DMC im-

plementation with variable population size, while urrent approah is easier to

implement and is more stable numerially. Both DMC algorithms outperform

algorithms based on the blind searh and simple random walks.

Both DMC shemes used in the urrent study are oneptually simple,

they are easy to implement on a multiproessor mahine. They require only

the value of the objetive funtion. Therefore, they are good andidates for

a general global optimization sheme, although they require the large number

of funtion evaluation, so their usage is limited to inexpensive funtions, whih

an be quikly and heaply alulated.
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