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Abstra
t. In this study we presented an algorithm for an un
onstrained optimiza-

tion of a 
ontinuous obje
tive fun
tion, inspired by the Di�usion Monte Carlo method

using a weight-based implementation. In this algorithm a 
loud of repli
as explores

the solution spa
e. Repli
as are moved and evaluated after ea
h step. Ea
h repli
a


arries an additional parameter (weight) whi
h re�e
ts the quality of its lo
al so-

lution. This parameter is updated after ea
h step. Most ine�
ient repli
as, i.e.

repli
as with the lowest weights, are o

asionally repla
ed with their highest weight


ounterparts. In our study we present the basi
 implementation of the algorithm

and 
ompare its performan
e with other approa
hes, in
luding the previously used

implementation of DMC algorithm with a �u
tuating population.

1. Introdu
tion

Finding a global minimum of a nontrivial multidimensional fun
tion is a 
hal-

lenging problem in many areas of s
ien
e and engineering [1, 2℄. Many of

these problems belong to the 
lass of NP-hard problems, whi
h make them

extremely di�
ult to solve � ex
ept for a relatively small and simple 
ases.

There is a large number of algorithms for solving various types of global

minimum problems (GOP), unfortunately there is no generi
 algorithm whi
h


an be applied to a wide sele
tion of GOP. Most of the algorithms rely on

the spe
i�
 
hara
teristi
s of the optimized fun
tion, although there are also

more general methods, e.g. geneti
 algorithms [3℄, and other evolutionary

approa
hes [4℄.
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In our study we present a di�erent approa
h to the global minimum prob-

lem, inspired by the Di�usion Monte Carlo method [5, 6℄ used in quantum

physi
s and 
hemistry. We have already used a di�erent implementation of

this algorithm in other studies [7�10℄ with a promising results.

In this paper we present a weight-based implementation of the DMC op-

timization s
heme and 
ompare it with the algorithm used in the previous

study.

In the next se
tions we dis
uss the details of the algorithm, show the e�-


ien
y of both approa
hes on a set of simple problems, and dis
uss the strong

and weak points of both s
hemes.

2. Methodology

The DMC algorithm is often used in 
omputational physi
s and 
hemistry to

solve numeri
ally a time dependent S
hrödinger equation by a random walk of

a 
loud of repli
as of a quantum system. Based on the weights distribution of

repli
as, the approximate wave-fun
tion of the system 
an be obtained. Two

implementations of the algorithms are used. One, suggested by Anderson [5℄,

involves the modi�
ations of the population size (kill/
lone pro
ess). Another

approa
h, used by Suhm and Watts [6℄, uses 
ontinuous weighting method.

In this study we applied the Suhm and Watts implementation of the DMC

algorithm. The following pro
edure was used in our simulations:

Initialize population. The initial population of repli
as is randomly

generated. Ea
h repli
a represents a possible solution (i.e. the ve
tor of

obje
tive fun
tion variables). The size of the population Nrep is an empiri
al

parameter and depends on the problem. The additional parameter (weight)

is assigned to ea
h repli
a. The usual value of the initial weight is 1
Nrep

.

Move repli
as. Ea
h repli
a is moved randomly with displa
ement ∆x
generated from the Gaussian distribution with µ = 0 and σ depending on the

problem:

xn+1 = xn + ∆x. (1)

Cal
ulate obje
tive fun
tion values and modify weights. The ob-

je
tive fun
tion value is 
al
ulated for ea
h repli
a. The weight (wi) of ea
h

repli
a is then modi�ed a

ording to Eq. 2, where fi is the obje
tive fun
tion

value of the repli
a i, f̄ is the mean value 
al
ulated over the total population,

τ is the empiri
al parameter, and n is the step number,

wi,n+1 = wi,n exp [−(fi − f̄)τ ]. (2)
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After the modi�
ation, weights of all repli
as are renormalized to avoid nu-

meri
al errors (under�ows or over�ows).

Ex
hange repli
as. During the simulation, some repli
as explore regions

of the solution spa
e with high obje
tive fun
tion values. To avoid the un-

ne
essary 
omputations, these repli
as are o

asionally removed. Ea
h time

the repli
a is removed from the population, the repli
a with the largest weight

is 
loned and the weight is divided between both 
opies. This pro
edure

eliminates worst solutions while keeping the population size 
onstant.

Che
k for stopping 
riteria. In our study we use a �xed number of

steps, although other 
riteria 
an also be used.

In our study we use two test fun
tions, namely A
kley's problem in

N-dimensions [11℄ and Griewangk's problem [12℄. A
kley's problem is a mul-

timodal, non-separable, di�erentiable and s
alable fun
tion de�ned as:

F (�x) = −20 · exp



−0.2

√

√

√

√

1

n
·

n
∑

i=1

x2
i





− exp

(

1

n
·

n
∑

i=1

cos(2πxi)

)

+ 20 + exp(1),

(3)

where �x = {x1, x2, . . . , xN}, and xi ∈ (−32.768, 32.768). It has a known

optimal solution for �x = {0, 0, . . . , 0}, and F (�x) = 0.
Griewangk's problem is also a multimodal, non-separable, di�erentiable

and s
alable fun
tion de�ned as:

F (�x) = 1 +

n
∑

i=1

x2
i

4000
−

n
∏

i=1

cos

(

xi√
i

)

, (4)

where �x = {x1, x2, . . . , xN}, and xi ∈ (−600, 600). It has a known optimal

solution for �x = {0, 0, . . . , 0}, and F (�x) = 0.
In our study we performed two sets of tests for ea
h fun
tion, using the

number of dimensions Ndim = 5 and Ndim = 20, respe
tively. For ea
h test we

performed DMC simulations using the randomly generated initial population

of Nrep = 100 repli
as, and the �xed number of steps, Nsteps = 1000. The

empiri
al parameter τ was set as 0.5 in all the DMC runs, and the value

of σ was equal to 0.5 for A
kley's problem and 5.0 for Griewangk's one (to

a

ount for its larger solution spa
e). After ea
h step 10% of the population

was repla
ed.

The values of the simulation parameters were based on the edu
ated guess

based on results from [8℄, although we are aware that these values may not be

optimal for our test fun
tions.
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For a referen
e, we used results from a blind sear
h, simple random walk,

and the DMC approa
h based on variable population size � DMC-VP (the

details of this method 
an be found in [10℄). In the �rst method, Nrep random

solution 
andidates in ea
h of the Nsteps steps are generated and evaluated.

In the se
ond one, repli
as are moved randomly a

ording to the Gaussian

distribution with a given σ value, but without the modi�
ation of the popu-

lation. In order to better 
ompare both DMC approa
hes, we used the same

simulation parameters in both DMC runs.

The 
omputational 
ost of all approa
hes is similar, therefore their perfor-

man
e 
an be dire
tly 
ompared.

All experiments were repeated three times to remove possible artifa
ts.

Ea
h time, the di�erent initial population was used for random walk and DMC

runs. The averaged values from these experiments were used for 
omparison

of the algorithms e�
ien
y.

3. Results and dis
ussion

Results of the simulations are shown in Table 1. The values finit are the best

solutions from the initial (randomly generated) populations. In the 
ase of the

blind sear
h, ea
h sampling is independent and therefore the initial solution

is de�ned as the result of �rst Nrep samples. The values of fbest are the best

solutions found during the simulation. The value fbest/finit gives the fa
tor,

by whi
h the initial solution was improved during the simulation. All the

values in Table 1 are averaged over three independent runs.

Table 1: Simulation results.

Test fun
tion: A
kley's Griewangk's

Ndim = 5

Method finit fbest
fbest

finit

finit fbest
fbest

finit

Blind sear
h

18.09

6.99 0.386

31.01

2.10 0.068

Random walk 11.27 0.623 18.39 0.593

DMC-VP 0.59 0.033 0.19 0.006

DMC-CW 0.66 0.036 0.12 0.004

Ndim = 20

Method finit fbest
fbest

finit
finit fbest

fbest

finit

Blind sear
h

20.40

18.78 0.921

315.22

161.19 0.511

Random walk 19.44 0.953 292.42 0.928

DMC-VP 4.66 0.228 1.31 0.004

DMC-CW 3.92 0.192 1.19 0.004
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The results obtained from both DMC-VP and DMC-CW simulation 
learly

outperform other approa
hes. In the 
ase of Griewangk's problem the improve-

ment of the initial solution is very good for both Ndim = 5 and Ndim = 20

ases, while for blind sear
h and random walk the e�
ien
y is not only mu
h

worse, but it also deteriorates for a larger problem size. There is no signi�-


ant di�eren
e between DMC-VP and DMC-CW results, both algorithm give

similar results.

A
kley's problem seems to be more 
hallenging for all algorithms. The

improvement for DMC is not as good as in the previous 
ase, espe
ially for

Ndim = 20, where the fa
tor of the solution improvement is only 0.2. Nev-

ertheless, the e�
ien
y of both DMC algorithms is mu
h better than other

methods, e.g. for Ndim = 20 both random walk and blind sear
h were able to

redu
e the initial solution by less than 10%. Both DMC-VP and DMC-CW

runs give similar results, although DMC-CW is slightly better for Ndim = 20.

From the e�
ien
y point of view, both DMC algorithms give similar results.

However, the DMC-CW approa
h has several advantages over the DMC-VP.

The �xed size of the population is easier to implement and handle in the


omputer storage (stati
 vs. dynami
). The DMC-VP population size 
an

drasti
ally 
hange (population explosion or annihilation) if in
orre
t parame-

ters are used. The DMC-CW does not use random number generator in the

modi�
ation phase, redu
ing the possible error from the low quality random

numbers (although random numbers are still used for moving repli
as).

Unfortunately, there are also several disadvantages of the DMC-CW s
heme:

The range of weights in
reases very fast and must be normalized to avoid

over�ows and under�ows. Some repla
ement strategy must be used to remove

ine�
ient repli
as without inhibiting the exploration pro
ess.

4. Con
lusions

In this study we have presented a new global optimization approa
h based

on the Di�usion Monte Carlo method with 
ontinuous weighting (DMC-CW).

We have shown that performan
e of this algorithm is similar to the DMC im-

plementation with variable population size, while 
urrent approa
h is easier to

implement and is more stable numeri
ally. Both DMC algorithms outperform

algorithms based on the blind sear
h and simple random walks.

Both DMC s
hemes used in the 
urrent study are 
on
eptually simple,

they are easy to implement on a multipro
essor ma
hine. They require only

the value of the obje
tive fun
tion. Therefore, they are good 
andidates for

a general global optimization s
heme, although they require the large number

of fun
tion evaluation, so their usage is limited to inexpensive fun
tions, whi
h


an be qui
kly and 
heaply 
al
ulated.
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