PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fretting and fretting corrosion of 316L implantation steel in the oral cavity environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Fretting i fretting-korozja stali implantacyjnej 316L w środowisku jamy ustnej
Języki publikacji
EN PL
Abstrakty
EN
Processes of mechanical destruction of implants, dental prosthetics elements, and orthodontic apparatus considerably limit their operating lifetime and the comfort of patients. Processes of destruction of kinematic joint elements caused by fretting and fretting corrosion processes are an important problem, albeit one that is not yet fully understood. This paper presents the results of fretting and fretting corrosion studies conducted on 316L implantation steel, which is used in dentistry, particularly in prosthetic and orthodontic applications. Tests were performed by means of an original device of the authors' own design, with the application of methodology developed by the authors. Fretting and corrosion tests were carried out in phosphate buffered saline (PBS) as well as in the presence of natural saliva and its substitutes. Own compositions of artificial saliva were developed for the purposes of studies. Observations of sample surfaces were performed using a scanning electron microscope (SEM) and a confocal microscope. Test results indicate a significant influence of fretting on the corrosion of 316L steel (fretting corrosion) as well as the important role of the studied fluids (saliva and its studies) in these processes. It was stated that the saliva substitute containing mucin III was characterized by the most favorable tribological characteristics. During fretting tests, intensive phenomena of materials conveyance into the friction contact area were observed.
PL
Procesy destrukcji metalicznych implantów, elementów protetyki stomatologicznej i aparatów ortodontycznych znacznie ograniczają ich trwałość eksploatacyjną i komfort pacjentów. Szczególnym zagadnieniem, aczkolwiek dalece niepoznanym, są procesy niszczenia elementów połączeń kinematycznych wywołane procesami frettingu i fretting – korozji. W pracy przedstawiono wyniki badań frettingu i fretting-korozji stali implantacyjnej 316L – używanej w stomatologii, szczególnie w zastosowaniach protetycznych i ortodontycznych. Badania realizowano za pomocą oryginalnego urządzenia własnej konstrukcji, z wykorzystaniem metodyki opracowanej przez autorów. Badania frettingu i korozji przeprowadzone zostały w buforze fosforanowym (PBS) jak również w obecności śliny naturalnej i jej substytutów. Na potrzeby badań opracowano własne kompozycje sztucznych ślin. Obserwacje powierzchni próbek prowadzone były z wykorzystaniem skaningowego mikroskopu elektronowego (SEM) oraz mikroskopu konfokalnego. Wyniki badań wskazują na znaczący wpływ frettingu na niszczenie korozyjne stali 316L (fretting-korozja), a także na istotną rolę badanych płynów (śliny i jej substytutów) w tych procesach. Stwierdzono, że najkorzystniejszymi charakterystykami tribologicznymi charakteryzował się substytut śliny zawierający mucynę III. W trakcie testów frettingu obserwowano intensywne zjawiska przenoszenia materiałów w strefie kontaktu tarciowego.
Rocznik
Strony
441--446
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of Materials and Biomedical Engineering Białystok Technical University Ul. Wiejska 45 C, 15-351 Białystok, Poland
autor
  • Department of Materials and Biomedical Engineering Białystok Technical University Ul. Wiejska 45 C, 15-351 Białystok, Poland
autor
  • Department of Materials and Biomedical Engineering Białystok Technical University Ul. Wiejska 45 C, 15-351 Białystok, Poland
Bibliografia
  • 1. Andrysewicz E, Mystkowska J, Dąbrowski J R. Krawczyk-Dembicka E, Investigations of tribological and physicochemical properties of human saliva and its substitutes. Engineering of Biomaterials, 2013, 118: 23-29.
  • 2. Andrysewicz E, Mystkowska J, Kolmas J, Jałbrzykowski M, Olchowik M R, Dąbrowski J R. Influence of artificial saliva compositions on tribological characteristics of Ti-6Al-4V implant alloy. Acta of Bioengineering and Biomechanics 2012; 14: 71-79.
  • 3. Bhola R, Bhola S M, Mishra B, Olson D L. Corrosion in titanium dental implants/prostheses – a review, Trends in Biomaterials and Artificial Organs 2011; 25: 34-46.
  • 4. Bieira A C, Ribeiro A R, Rocha L A, Celis J P. Influeance of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear 2006; 261: 994-1001.
  • 5. Bronzino J D, ed. The Biomedical Engineering HandBook, Second Edition. Boca Raton: CRC Press LLC, 2000.
  • 6. Dobrzański L A, Reimann Ł. Influence of Cr and Co on hardness and corrosion resistance CoCrMo alloys used on dentures. Journal of Achievements in Materials and Manufacturing Engineering 2011; 49: 193-199.
  • 7. Dodds M W J, Johson D A, Yeh C. Health benefits of saliva: a review, Journal of Dentistry 2005; 33: 223-233.
  • 8. Ducheyne P, Healy K, Hutmacher D E, Grainger D W, Kirkpatrick C J. Comprehensive biomaterials (6 volume set). Oxford: Elsevier, 2011.
  • 9. Duisabeau L, Combrade P, Forest B. Environmental effect on fretting of metallic materials for orthopaedic implants. Wear 2004; 256: 805-816.
  • 10. Eliades T, Athanasiou A E. In vivo aging of orthodontic Alloys: Implications for corrosion potential, nickel release and biocompatibility. Angle Orthodontist 2002; 72: 222-237.
  • 11. Fraunhofer J A. Corrosion of orthodontic devices. Seminars in Orthodontics 1997; 3: 198-205.
  • 12. Hallab N J, Messina C, Skipor A, Jacobs J J. Differences in the fretting corrosion of metal-metal and ceramic-metal modular junctions of total hip replacements. Journal of Orthopaedic Research 2004; 22: 250-259.
  • 13. Hansen D C. Metal corrosion in the human body: the ultimate bio-corrosion scenario. The Electrochemical Society Interface 2008; 17: 31-34.
  • 14. He D, Zhang T, Wu Y. Fretting and galvanic corrosion behaviors and mechanisms of Co-Cr-Mo and Ti-6Al-4V alloys. Wear 2002; 249: 883-891.
  • 15. Krasicka-Cydzik E, Mystkowski J, Ciupik F L. Materiały implantowe: stal a stopy tytanu, System Dero: Rozwój technik operacyjnego leczenia kręgosłupa.
  • 16. Kumar S, Narayanan T S N S, Raman S G S, Seshadri S K. Evaluation of fretting corrosion behaviour of CP-Ti orthopaedic implant applications. Tribology International 2010; 43: 1245-1252.
  • 17. Lgied M, Liskiewicz T, Neville A. Electrochemical investigation of corrosion and wear interactions under fretting conditions. Wear 2012; 282-283: 52-58.
  • 18. Mystkowska J, Jałbrzykowski M, Dąbrowski J R. Tribological properties of selected self-made solutions of synthetic saliva. Solid State Phenomena 2013; 199: 567-572.
  • 19. Neyman A. Fretting w elementach maszyn. Wydawnictwo Politechniki Gdańskiej, 2003, Gdańsk.
  • 20. Norma PN-EN ISO 10993-15:2009. Biologiczna ocena wyrobów medycznych. Identyfikacja i oznaczanie ilościowe produktów degradacji metali i stopów.
  • 21. Paulin C, Fouvry S, Meunier C. Finite element modeling of fretting wear surface evolution: Application to a Ti-6Al-4V contact. Wear 2008; 264: 26-36.
  • 22. Pellier J, Geringer J, Forest B. Fretting-corrosion between 316L SS and PMMA: influence of ionic strength, protein and electrochemical conditions on material wear. Application to orthopedic implants. Wear 2011; 271: 1563-1571.
  • 23. Rajendran S, Uma V, Krishnaveni A, Jeyasundari J, Shyamaladevi B, Manivannan M. Corrosion behavior of metals in artificial saliva In presence of D-Glucose. The Arabian Journal for Science and Engineering 2009; 34: 147-158.
  • 24. Rapiejko C, Fouvry S, Grosgogeat B, Wendler B. A representative ex-situ fretting wear investigation of orthodontic arch-wire/bracket contacts. Wear 2009; 266: 850-858.
  • 25. Ratner B D, Hoffman A S, Schoen F J, Lemons J E. Biomaterials science: An introduction to materials and medicine. San Diego: Academic Press, 1997.
  • 26. Sajewicz E. Effect of saliva viscosity on tribological behaviour of tooth enamel. Tribology International 2009; 42: 327-332.
  • 27. Schipper R A, Silletti E, Vingerhoeds M H. Saliva as research material: Biochemical, physiocochemical and practical aspects. Archives of Oral Biology 2007; 52: 1114-1135.
  • 28. Sharma M, Kumar A V R, Singh N, Adya N, Saluja B. Electrochemical corrosion behavior of dental/implant alloys in artificial saliva, Journal of Materials Engineering and Performance 2008; 17: 695-701.
  • 29. Shih C C, Shih C M, Chen Y L, Su Y Y, Shih J S, Kwok C F, Lin S J. Growth inhibition of cultured smooth muscle cells by corrosion products of 316 L stainless steel wire. Journal of Biomedical Materials Research 2001; 57: 200-207.
  • 30. Sivakumar B, Kumar S, Narayanan T S N S. Fretting corrosion behaviour of Ti-6Al-4V alloy in artificial saliva containing varying concentrations of fluoride ions. Wear 2011; 270: 317-324.
  • 31. Sivakumar M, Shanadurai K S K, Rajeswari S, Thulasiraman V. Failures in stainless steel orthopaedic implant devices: A survey, Journal of Materials. Science Letters 1995; 14: 351-354.
  • 32. Szymański K, Olszewski W, Satuła D, Rećko K, Waliszewski J, Kalska-Szostko B, Dąbrowski J R, Sidun J, Kulesza E. Characterization of fretting products between austenitic and martensitic stainless steels using Mossbauer and X-ray techniques. Wear 2013; 300: 90-95.
  • 33. Tritschler B, Forest B, Rieu J. Fretting corrosion of materials for orthopaedic implants: a study of a metal/polymer contact in an artificial physiological medium. Tribology International 1999; 32: 587-596.
  • 34. Vadiraj A, Kamaraj M. Effect of surface treatments on fretting fatigue damage of biomedical titanium alloys. Tribology International 2007; 40: 82-88.
  • 35. Xulin S, Ito A, Tateishi T, Hoshino A. Fretting corrosion resistance and fretting corrosion product cytocompability of ferritic stainless steel. Journal of Biomediacal Mterials Research 1997; 34: 9-14.
  • 36. Yu H Y, Quan H X, Cai Z B, Gao S S, Zhu M H. Radial fretting behavior of cortical bone against titanium. Tribology Letters 2008; 31: 69-76.
  • 37. Zhu M H, Yu H Y, Zhou Z R. Radial fretting behaviours of dental ceramics. Tribology International 2006; 39: 1255-1261.
  • 38. Zhu M H, Zhou Z R. On the mechanisms of various fretting wear modes. Tribology International 2011; 44: 1378-1388.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6684b96-887d-4430-bbf1-7c4bccd47ddd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.