Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study addresses an ecofriendly solution to treat automobile service stations effluents with high concentrations of oily substances, surfactants, organic matter and heavy metals. Bioadsorption using sawdust from pine trees, sugar cane bagasse and coconut coir without any chemical modification removed colloidal contamination up to 70%. Polyaluminium chloride, ferric chloride and polyacrylamide were applied to remove dissolved and colloidal pollutants under saline conditions without change of initial pH. Both bioadsorption and coagulation-flocculation removed up to 97.8% of BOD, COD, surfactants and heavy metals at a saline concentration of 1.5% NaCl. The increase of ionic strength promoted a high sludge index and a representative cost saving in chemicals consumption of almost 70%. High levels of pollution removal with the minimal use of chemicals is herein presented.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 22 poz., tab., rys.
Twórcy
autor
- Department of Environmental Engineering, Universidad Agraria del Ecuador, Av. 25 de Julio y Pio Jaramillo, 59304, Guayaquil (Guayas), Ecuador
autor
- Universidad de Las Américas (UDLA), Environmental Engineering, Av. de los Granados & J. Queri, 59302, Quito, Ecuador
autor
- Universidad de Las Américas (UDLA), Environmental Engineering, Av. de los Granados & J. Queri, 59302, Quito, Ecuador
Bibliografia
- 1. Abdeen, Z., & Moustafa, Y.M.M. 2016. Treatment of Oily Wastewater by Using Porous PVA Hydrogels as Oil Adsorbent. Journal of Dispersion Science and Technology, 37(6), 799–805. DOI: 10.1080/01932691.2015.1062774.
- 2. Abdel Salam, O.E., Reiad, N.A., & ElShafei, M.M. 2011. A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. Journal of Advanced Research, 2(4), 297– 303. DOI: 10.1016/j.jare.2011.01.008.
- 3. Abdelmoez, W., Barakat, N.A.M., & Moaz, A. 2013. Treatment of wastewater contaminated with detergents and mineral oils using effective and scalable technology. Water Science & Technology, 68(5), 974. DOI: 10.2166/wst.2013.275.
- 4. Ali, N., El-Harbawi, M., Jabal, A.A., & Yin, C.- Y. 2012. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix. Environmental Technology, 33(4), 481–486. DOI: 10.1080/09593330.2011.579185.
- 5. Annunciado, T.R., Sydenstricker, T.H.D., & Amico, S.C. 2005a. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 50(11), 1340– 1346. DOI: 10.1016/j.marpolbul.2005.04.043.
- 6. Annunciado, T.R., Sydenstricker, T.H.D., & Amico, S.C. 2005b. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 50(11), 1340– 1346. DOI: 10.1016/j.marpolbul.2005.04.043.
- 7. Barakat, M.A. 2011. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–377. DOI: 10.1016/j.arabjc.2010.07.019.
- 8. Bhatnagar, A., & Sillanpää, M. 2010a. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chemical Engineering Journal, 157(2–3), 277–296. DOI: 10.1016/j.cej.2010.01.007.
- 9. Bhatnagar, A., & Sillanpää, M. 2010b. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chemical Engineering Journal, 157(2–3), 277–296. DOI: 10.1016/j.cej.2010.01.007.
- 10. Daneshvar, N., Ashassi-Sorkhabi, H., & Tizpar, A. 2003. Decolorization of orange II by electrocoagulation method. Separation and Purification Technology, 31(2), 153–162.
- 11. Israel, A.U., Ogali, R.E., Akaranta, O., & Obot, I.B. 2011. Extraction and characterization of coconut (Cocos nucifera L.) coir dust. Songklanakarin Journal Science Technology, 33(6), 717–724.
- 12. Kumar, S.A., Kokila, A., & Banu, J.R. 2014. Biodegradation of automobile service station wastewater. Desalination and Water Treatment, 52(25–27), 4649–4655. DOI: 10.1080/19443994.2013.808416.
- 13. Lau, W.J., Ismail, A.F., & Firdaus, S. 2013. Car wash industry in Malaysia: Treatment of car wash effluent using ultrafiltration and nanofiltration membranes. Separation and Purification Technology, 104, 26–31. DOI: 10.1016/j.seppur.2012.11.012.
- 14. Mohamed, R., Saphira, R.M., Kutty, A.I., Mariam, N., Kassim, M., & Hashim, A. 2014. Efficiency of using commercial and natural coagulants in treating car wash wastewater treatment. Australian Journal of Basic and Applied Sciences, 8(16), 227–234.
- 15. Mosier, N. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. DOI: 10.1016/j.biortech.2004.06.025.
- 16. OICA. 2016. World Motor Vehicle Sales. International Organization of Motor Vehicle Manufacturers. Retrieved from http://www.oica.net/wp-content/uploads//total-sales-20151.pdf.
- 17. Sabir, S. 2015. Approach of Cost-Effective Adsorbents for Oil Removal from Oily Water. Critical Reviews in Environmental Science and Technology, 45(17), 1916–1945. DOI: 0.1080/10643389.2014.1001143.
- 18. Salit, M.S. 2014. Tropical Natural Fibres and Their Properties. In: M.S. Salit, Tropical Natural Fibre Composites, pp. 15–38. Singapore: Springer Singapore. Retrieved from DOI: 10.1007/978-981-287-155-8_2.
- 19. Shadizadeh, S.R., Khodashenas, A., Abtahi, S.M., & Roayaei, E. 2014. Experimental Investigation of Oil Spill Cleanup Using Cholan as a Natural Oil Absorber. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(9), 982–992. DOI: 10.1080/15567036.2010.549924.
- 20. Sokolovic, S., Secerov‐Sokolovic, R., & Putnik, S. 1992. Some aspects of application of waste polymer materials as a coalescence medium for oily wastewater treatment. Environmental Technology, 13(10), 987–994. DOI: 10.1080/09593339209385234.
- 21. Yang, C., & Mcgarrahan, J. 2005. Electrochemical coagulation for textile effluent decolorization. Journal of Hazardous Materials, 127(1–3), 40–47. DOI: 10.1016/j.jhazmat.2005.05.050.
- 22. Zhao, S., Huang, G., Fu, H., & Wang, Y. 2014. Enhanced Coagulation/Flocculation by Combining Diatomite with Synthetic Polymers for Oily Wastewater Treatment. Separation Science and Technology, 49(7), 999–1007. DOI: 10.1080/01496395.2013.877035.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a663bb82-e963-4e8f-895e-d1a69418b301