PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Design of PI sliding mode control for Zeta DC-DC converter in PV system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar energy has become one of the most potential alternative energies in the world. To convert solar energy into electricity, a photovoltaic (PV) system can be utilized. However, the fluctuation of sunlight intensity throughout the day greatly affects the generated energy in the PV system. A battery may be beneficial to store the generated energy for later use. A DC–DC converter is commonly exploited to produce a constant output voltage during the battery charging process. A Zeta converter is a DC–DC converter which can be used to produce output values above or below the input voltage without changing the polarity. To deal with the inherent non-linearity and time-varying properties of the converter, in this paper the sliding mode control (SMC) is first analyzed and exploited before being integrated with a proportional-integral (PI) control to regulate the output voltage of the PV system. Disturbances are given in the form of changes in input voltage, reference voltage, and load. Voltage deviation and recovery time to reach a steady-state condition of the output voltage after disturbances are investigated and compared to the results using a proportional-integral-differential (PID) controller. The results show that the proposed control design performs faster than the compared PID control method.
Rocznik
Strony
art. no. e140952
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Electrical Engineering Department, Universitas Brawijaya, Indonesia
  • Electrical Engineering Department, Universitas Brawijaya, Indonesia
autor
  • Electrical Engineering Department, Universitas Brawijaya, Indonesia
  • Electrical Engineering Department, Universitas Brawijaya, Indonesia
  • Electrical Engineering Department, Universitas Dian Nuswantoro, Indonesia
autor
  • Electrical Engineering Department, Universitas Brawijaya, Indonesia
  • Electrical Engineering Department, Cal Poly State University, USA
Bibliografia
  • [1] REN21, “Distributed Renewables for Energy Access,” in Renewables 2021 Global Status Report, Paris: REN21 Secretariat, 2021. [Online]. Available: https://www.ren21.net/gsr-2021/chapters/chapter_04/chapter_04/ [Accessed: 08. Nov. 2021]
  • [2] A. Mehravaran, A. Derhem, and M. Nassereddine, “Building-Integrated Photovoltaics (BIPV) for Residential and Industrial Properties,” in Proc. Advances in Science and Engineering Technology International Conferences (ASET), 2019, pp. 1–6, doi: 10.1109/ICASET.2019.8714466.
  • [3] C.W.X. Ng, J. Zhang, and S.E.R. Tay, “A Tropical Case Study Quantifying Solar Irradiance Collected on a Car Roof for Vehicle Integrated Photovoltaics Towards Low-Carbon Cities,” in Proc. 47th IEEE Photovoltaic Specialists Conference (PVSC), 2020, pp. 2461–2464, doi: 10.1109/PVSC45281.2020.9300351.
  • [4] J. Dawidziuk, “Review and comparison of high efficiency high power boost DC/DC converters for photovoltaic applications,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, no. 4, pp. 499–506, 2011, doi: 10.2478/v10175-011-0061-7.
  • [5] S. Moury and J. Lam, “An Integrated PV-Battery Soft-switched Power Converter with MPPT and Voltage Regulation,” in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 3433–3440, doi: 10.1109/ECCE.2019.8913273.
  • [6] S. Moury and J. Lam, “A Soft-Switched Power Module With Integrated Battery Interface for Photovoltaic-Battery Power Architecture,” IEEE J. Emerging Sel. Top. Power Electron., vol. 8, no. 3, pp. 3090–3110, 2020, doi: 10.1109/JESTPE.2019.2916733.
  • [7] R.K. Subroto, L. Ardhenta and E. Maulana, “A novel of adaptive sliding mode controller with observer for DC/DC boost converters in photovoltaic system,” in Proc. 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), 2017, pp. 9–14, doi: 10.1109/ICEEIE.2017.8328754.
  • [8] R.K. Subroto, L. Ardhenta and K. Lian, “Observer Based Adaptive PI Sliding Mode Controller for Cuk Converter,” in Proc. 6th International Conference on Instrumentation, Control, and Automation (ICA), 2019, pp. 82–87, doi: 10.1109/ICA.2019.8916718.
  • [9] L. Ardhenta, P. Kuswiradyo, and R.K. Subroto, “Model direct adaptive control of buck converter by using MRAC,” Int. J. Innov. Techn. Explor. Eng., pp. 1108–1112, 2019, doi: 10.35940/ijitee.L3882.1081219.
  • [10] L. Ardhenta and R.K. Subroto, “Application of direct MRAC in PI controller for DC–DC boost converter,” Int. J. Power Electron. Drive Syst., pp. 851–858, 2020, doi: 10.11591/ijpeds.v11.i2.pp851-858.
  • [11] A. Kawa and R. Stala, “The flying-capacitor SEPIC converter with the balancing circuit,” Arch. Electr. Eng., vol. 65, no. 3, pp. 411–424, 2016, doi: 10.2478/v10175-011-0061-7.
  • [12] F. Bayat, M. Karimi, and A. Taheri, “Robust output regulation of Zeta converter with load/input variations: LMI approach,” Control Eng. Pract., vol. 84, pp. 102–111, 2019, doi: 10.1016/j.conengprac.2018.10.023.
  • [13] P.R. Babu, S.R. Prasath, and R. Kiruthika, “Simulation and performance analysis of CCM Zeta converter with PID controller,” in Proc. International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], 2015, pp. 1–7, doi: 10.1109/ICCPCT.2015.7159506.
  • [14] S. Arvind, R. Akshay and A. Sreedevi, “A novel constant frequency sliding mode control of DC–DC converters,” in Proc. IEEE 7th Power India International Conference (PIICON), 2016, pp. 1–6, doi: 10.1109/POWERI.2016.8077387.
  • [15] D.W. Hart. Power Electronics. New York: McGraw-Hill, 2011.
  • [16] K. Woranetsuttikul, K. Pinsuntia, N. Jumpasri, T. Nilsakorn, and W. Khanngern, “Comparison on performance between synchronous single-ended primary-inductor converter (SEPIC) and synchronous ZETA converter,” in Proc. International Electrical Engineering Congress (iEECON), 2014, pp. 1–4, doi: 10.1109/iEECON.2014.6925855.
  • [17] V.I. Utkin, “Sliding Mode Control: Mathematical Tools, Design and Applications,” in Nonlinear and Optimal Control Theory. Lecture Notes in Mathematics, vol. 1932, Nistri P., Stefani G. (eds). Springer, Berlin, Heidelberg: Springer, 2008, doi: 10.1007/978-3-540-77653-6_5.
  • [18] L. Zarour, K. Abed, M. Hacil, and A. Borni, “Control and optimisation of photovoltaic water pumping system using sliding mode,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 605–611, 2019, doi: 10.24425/bpasts.2019.129658.
  • [19] D.K. Dash, P.K. Sadhu, and B. Subudhi, “Spider monkey optimization (SMO) – lattice Levenberg–Marquardt recursive least squares based grid synchronization control scheme for a threephase PV system,” Arch. Control Sci., vol. 31, no. LXVII, pp. 707–730, 2021, doi: 10.24425/acs.2021.138698.
  • [20] K. Ogata. Modern Control Engineering. New Jersey: Prentice Hall, 2010, pp. 11–15, 18–21.
  • [21] S.K. Pandey, S.L. Patil, S.B. Phadke, and A.S. Deshpande, “Investigation of sliding mode control of higher order DC–DC converters,” in Proc. 7th India International Conference on Power Electronics (IICPE), 2016, pp. 1–5, doi: 10.1109/IICPE.2016.8079439.
  • [22] B.B. Naik and A.J. Mehta, “Sliding mode controller with modified sliding function for DC–DC Buck Converter,” ISA Trans., vol. 70, pp. 279–287, 2017, doi: 10.1016/j.isatra.2017.05.009.
  • [23] C.S. Sachin and S.G. Nayak, “Design and simulation for sliding mode control in DC–DC boost converter,” in Proc. 2nd International Conference on Communication and Electronics Systems (ICCES), 2017, pp. 440–445, doi: 10.1109/CESYS.2017.8321317.
  • [24] J. Cao, Q. Chen, L. Zhang, and S. Quan, “Sliding mode control of bidirectional DC/DC converter,” in Proc. 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2018, pp. 717–721, doi: 10.1109/YAC.2018.8406465.
  • [25] Rashmi, J. Manohar, and K.S. Rajesh, “A comparative study and performance analysis of synchronous SEPIC Converter and synchronous Zeta Converter by using PV system with MPPT technique,” in Proc. IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1–6, doi: 10.1109/ICPEICES.2016.7853212.
  • [26] K.O. Vijay and P. Sriramalakshmi, “ Comparison between Zeta Converter and Boost Converter using Sliding Mode Controller,” Int. J. Res. Tech. (IJERT), vol. 5, no. 7, pp. 368–373, 2016, doi: 10.17577/IJERTV5IS070322.
  • [27] H.M. Solaiman, M.M. Hasan, A. Mohammad, S.R. Kawsar, and M.A. Hassan, “Performance analysis of DC to DC boost converter using different control methods,” in Proc. IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 2015, pp. 1–5, doi: 10.1109/ICECCT.2015.7226007.
  • [28] D. Plaza, R. De Keyser and J. Bonilla, “Model Predictive and sliding mode control of a Boost converter,” in Proc. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2008, pp. 37-42, doi: 10.1109/SPEEDHAM.2008.4581242.
  • [29] B. Talbi, F. Krim, A. Laib, A. Sahli, and A. Krama, “PI-MPC Switching Control for DC–DC Boost Converter using an Adaptive Sliding Mode Observer,” in Proc. International Conference on Electrical Engineering (ICEE), 2020, pp. 1–5, doi: 10.1109/ICEE49691.2020.9249934.
  • [30] D. Cui, H. Zhu, and H. Liu, “Adaptive fuzzy control for a class of uncertain chaotic systems based on proportional-integral sliding mode control approach,” in Proc. Chinese Control and Decision Conference (CCDC), 2018, pp. 589–593, doi: 10.1109/CCDC.2018.8407200.
  • [31] M.S. Diab, A. Elserougi, A.S. Abdel-khalik, A.M. Massoud and S. Ahmed, “A Zeta-converter based four-switch three-phase DCAC inverter,” in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 4671–4677, doi: 10.1109/ECCE.2015.7310320.
  • [32] M. Ebadpour and F. Radmand, “Hyper-Plane Sliding Mode Control of Non-Minimum Phase Grid-Connected Zeta Converter,” in Proc. 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2021, pp. 1–5, doi: 10.1109/PEDSTC52094.2021.9405835.
  • [33] C.-Y. Chan, “Adaptive Sliding-Mode Control of a Novel Buck-Boost Converter Based on Zeta Converter,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 3, pp. 1307–1311, 2022, doi: 10.1109/TCSII.2021.3107315.
  • [34] K. Durgadevi and R. Karthik, “Performance Analysis of Zeta Converter Using Classical PID and Fractional Order PID Controller,” in Proc. International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), 2018, pp. 312–317, doi: 10.1109/ICPECTS.2018.8521573.
  • [35] S. Tan, Y.M. Lai, and C.K. Tse, “General Design Issues of Sliding-Mode Controllers in DC–DC Converters,” IEEE Trans. Ind. Electron. vol. 55, no. 3, pp. 1160–1174, 2008, doi: 10.1109/TIE.2007.909058.
  • [36] B. Saleh, A. Teirelbar, and A. Wasfi, “A DC/DC buck-boost converter control using sliding surface mode controller and adaptive PID controller,” in Proc. 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), 2020, pp. P.1–P.8, doi: 10.23919/EPE20ECCEEurope43536.2020.9215853.
  • [37] S. Misal and M. Veerachary, “Analysis of a Fourth-Order Step-Down Converter,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2773–2787, 2020, doi: 10.1109/TIA.2020.2975500.
  • [38] J. Mahdavi, A. Emaadi, M.D. Bellar, and M. Ehsani, “Analysis of power electronic converters using the generalized state-space averaging approach,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., vol. 44, no. 8, pp. 767–770, 1997, doi: 10.1109/81.611275.
  • [39] D. Yan, C. Yang, L. Hang, Y. He, P. Luo, L. Shen and P. Zeng, “Review of general modeling approaches of power converters,” Chin. J. Electr. Eng., vol. 7, no. 1, pp. 27–36, 2021, doi: 10.23919/CJEE.2021.000002.
  • [40] A. Ravi, S.L. Phen, P.A. Pandi, J.J. Gnanachandran, N. Subramanian, and N.S. Pratheepa, “The State Space Average Model of Cuk Converter Fed From Photo Voltaic Array,” in Proc. 5th International Conference on Trends in Electronics and Informatics (ICOEI), 2021, pp. 349–355, doi: 10.1109/ICOEI51242.2021.9453017.
  • [41] R.H.G. Tan and L.Y.H. Hoo, “DC–DC converter modeling and simulation using state space approach,” in Proc. IEEE Conference on Energy Conversion (CENCON), 2015, pp. 42–47, doi: 10.1109/CENCON.2015.7409511.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a663a927-e5ec-45b4-bab6-0805ecc2e7ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.