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Abstract: This paper aims to present the dynamic control of a Car-like Mobile Robot (CLMR) using Synergetic Control (SC). The SC  
control is used to make the linear velocity and steering velocity converge to references. Lyapunov synthesis is adopted to assure controlled 
system stability. To find the optimised parameters of the SC, the grey wolf optimiser (GWO) algorithm is used. These parameters depend 
on the best-selected fitness function. Four fitness functions are selected for this purpose, which is based on the integral of the error square 
(ISE), the integral of the square of the time-weighted error (ITSE), the integral of the error absolute (IAE) and the integral of the absolute  
of the time-weighted error (TIAE) criterion. To go further in the investigation, fuzzy logic type 2 is used to get at each iteration the appropri-
ate controller parameters that give the best performances and robustness. Simulations results are conducted to show the feasibility  
and efficiency of the proposed control methods.  
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1. INTRODUCTION 

In recent years, many works have been done on self-driving 
cars. This is mainly due to the increasing number of accidents on 
the road caused especially by inattention. How we drive is ineffi-
cient and becomes a real problem as we get old or we get more 
infirm. The way technology is evolving has brought many solutions 
to rolling vehicles. To end up with a smart vehicle, we should 
equip it with different sensors, a robust computing platform and 
robust control algorithms that execute in real time. In fact, the 
research in control focuses on the robustness of control laws and 
their influence on external disturbance, as well as on vehicle's 
response speed to execute the task and perform the desired 
objectives. Therefore, the recent works on control are oriented to 
these kinds of systems. The controller is to regulate some of the 
states of the vehicle such as velocity and rotation rate by sensing 
the current state variables and generating actuator signals to 
satisfy the objectives provided. Within this aspect, different tech-
niques have been proposed. To obtain a stable movement of 
trajectory tracking we can find a lot of works applied to indoor and 
outdoor mobile robots. Dung et al. [4] developed an adaptive 
sliding mode control, they use this control to achieve the mobile 
robot tracking a smooth curved reference, with a desired constant 
velocity. Yeh et al. [20] presented an adaptive fuzzy sliding-mode 
control for trajectory tracking under disturbances for a car-like 
mobile robot (CLMR). They presented three dynamic controllers, 
namely Adaptative Sliding Mode Control(ASMDC), and Adaptative 
Fuzzy Sliding Mode Control (AFSMDC),  which are proposed to 
reduce the effect of the problem of uncertainties and external 
disturbances. Peng and Shi [16] solved the problem of uncertain-
ties and external disturbances in a non-holonomic wheeled mobile 
robot, where the uncertainties are approximated by a fuzzy logic 
system and an adaptive fuzzy integral terminal sliding mode con-

troller is used for velocity controller. An adequate control law is 
presented in Benaziza et al. [2]. It is based on Global Terminal 
Sliding Mode (GTSM) with fuzzy control. The objective of this 
control is to eliminate the disturbances of the angular and linear 
velocities, respectively. Moreover, an exponential reaching law is 
presented in a dynamic model to eliminate the uncertainties. 
Ibrahim [8] proposed a robust sliding mode controller for trajectory 
tracking for the non-holonomic robot. In his study, two stages of 
the proposed control strategy are presented. The first one uses 
the steering controller for the kinematics model and the second is 
a robust sliding mode control technique for the velocity. Mallem et 
al. [12] proposed a dynamic control RBF Global Fast Sliding mode 
for a mobile robot, for which the main task is making the linear 
and angular velocities converge to references in finite time. The 
system injected by disturbances. To stabilise the velocity errors 
and estimate the non-linear function of the robot, the RBF-GFSM 
approach is used, which combines the RBF neural network and 
Global Fast Sliding mode. 

Sliding Mode Control (SMC) has been widely used in mobile 
robot control and great effort has been made to reduce its main 
inconvenience: chattering. Many approaches have been proposed 
to eliminate chatter, including synergistic control of the system 
and decoupling, but it is used for several advantages. First, it is 
well suited for digital implementation. The second advantage is 
that the control operates at the constant switching frequency and 
therefore avoids chattering problems. 

As there is not much application of this type of control in the 
robot, Liu and Hsiao [11] proposed a finite time synergetic control 
(FTSC) for controlling robot manipulators. This technique was 
extracted from the use of synergetic theory and a terminal attrac-
tor technique. Their control scheme demonstrates its advantage in 
the finite-time convergence and chattering-free phenomena. 
Podvalny and Vasiljev [17] deployed a SC to solve the problem of 
synthesis of a multirotor unmanned aerial vehicle (UAV) regulator. 
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Veselov et al. [19] solved the problem of a group of mobile robots 
using the principles and methods of synergistic control theory. 
Sklyarov et al. [18] presented the explanation of using new non-
linear approaches to design control systems for omnidirectional 
mobile robots, the synergetic control theory (SCT). Bhattacharyya 
et al. [3] proposed a brain-machine interfacing (BMI) paradigm for 
controlling the direction of end-point movement of a 3-degrees of 
freedom (DOF) robot arm, and they use a synergetic algorithm to 
manage a peripheral redundancy in multi-DOF joints towards 
energy optimality. Humaidi et al. [7] developed a SCT for control-
ling a one-link robot arm actuated by pneumatic artificial muscles 
(PAMs) in opposing bicep/tricep positions. A terminal SC is ap-
plied to a nonlinear helicopter model to control the nonlinear fifth-
order helicopter model, which controls height and angle [6]. 

Moreover, when it comes to looking for the best performances 
that the system can achieve, some parameters should be well 
determined according to certain predefined criteria. This can 
always be obtained by intelligent optimisation algorithms. One of 
these algorithms is grey wolf optimiser (GWO). It is an evolution-
ary algorithm that uses a population of candidate solutions to 
develop an optimal solution to the problem. Mirjalili et al. [14] 
proposed this algorithm in 2014. It was originally inspired by the 
living world, more precisely by the social behaviour of animals 
evolving in swarms, inspired by grey wolves (Canis lupus). The 
GWO algorithm mimics the leadership hierarchy and hunting 
mechanism of grey wolves in nature. GWO has gained increasing 
popularity among researchers and practitioners as a robust and 
effective technique for solving difficult optimisation problems [5, 6, 
9, 13, 15]. 

In this paper, we present a SC law to command successfully a 
CLMR. In fact, it seems reasonable to work on controlling auton-
omous driving vehicles by taking a CLMR. This is accom-plished 
by making the velocity and the rotational rate of the car-like mobile 
robot converge to their references in presence of disturbances. 
The asymptotic stability is guaranteed by Lyapunov theory, for 
which certain parameters need to be well chosen to achieve the 
best performances. To obtain the optimised parame-ters, the grey 
wolf optimiser (GWO) algorithm is employed for this purpose. 

The paper is organised as follows, in section two, the kinemat-
ic and dynamic model of the CLMR is introduced. Section 3 intro-
duces the basics of SCT for nonlinear systems. It is reviewed 
briefly with stability proved for closed-loop control systems. Sec-
tion 4, GWO is applied to determine the optimal parameters of 
SC. Section 5, propose a Fuzzy Logic type2 Synergetic Control 
for an uncertain CLMR system with external disturbances. In 
Section 6, simulations are performed to examine the feasibility 
and effectiveness of the approach. A conclusion is drawn in Sec-
tion 7. 

2. KINEMATICS AND DYNAMICS MODELS 

This section aims to describe the kinematic and dynamic 
model of a CLMR. The geometry of the CLMR is shown in Fig. 1. 

2.1. Kinematics model 

The state of the robot’s motion is represented by the vector 𝑞 

such that: 𝑞 =   [𝑥 𝑦 𝜃  𝜑]𝑇 , where (𝑥, 𝑦) are the 

coordinates of the center of the two rear wheels. 𝜃: indicates the 

heading direction of the CLMR concerning the 𝑥-axis,   is the 

steering angle of the front wheels, and 𝜑 denotes the angular 
velocity of the wheels. The kinematic model of the CLMR is given 
by, 

[
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𝑣
̇] = 𝑆(𝑞)𝑉          (1) 

where: 𝑆(𝑞)𝜖 ℝ5𝑥2and 𝑉𝜖 ℝ2 are the full rank velocity transfor-
mation matrix and velocity vector, respectively. ̇𝜖ℝ denotes the 
steering velocity of the front wheels, d is the distance between the 
front and rear wheels, and a is the radius of the wheels. 

 
Fig. 1. The kinematics model of a non-holonomic CLMR. CLMR,  
             Car-like mobile robot 

The linear velocity of the CLMR, v(t)𝜖 ℝ, is obtained as: 

𝑣(𝑡) = √�̇�2 + �̇�2         (2) 

Here, we have two non-holonomic constraints, one for each 
wheel pair, that is: 

�̇�𝑠𝑖𝑛𝜃 − �̇� 𝑐𝑜𝑠 𝜃 = 0            (3) 

�̇� 𝑠𝑖𝑛(𝜃 + 𝜑) − �̇� 𝑐𝑜𝑠(𝜃 + 𝜑) − 𝜌�̇� 𝑐𝑜𝑠 𝜑 = 0         (4) 

The two constraints can be rewritten as 𝐻(𝑞)�̇� = 0, and 
therefore, 

𝐻(𝑞)𝑆(𝑞)𝑉 = 0               (5) 

Such that 

𝐻(𝑞) [
𝑠𝑖𝑛 𝜃 − 𝑐𝑜𝑠 𝜃 0        0 0

𝑠𝑖𝑛(𝜃 + 𝜑) − 𝑐𝑜𝑠(𝜃 + 𝜑) 𝜌 𝑐𝑜𝑠 𝜑 0 0]     (6) 

2.2. The dynamic model of the CLMR 

The robot dynamic model of the non-holonomic mobile robot 
deals with the derivation of the dynamic equations of the robot 
motion. In this case, we use the methodologies of the Lagrange 
formula,  

d

dt
(

∂L

∂qi̇
) −

∂L

∂qi
= N̅(q)τ + HT(q)λ         (7) 

L is the Lagrangian function defined by: 

L = K-P          (8) 

Here, K is the total kinetic energy, and P is the total potential 
energy of the robot. The Lagrangian L is equal to K since the 
robot is moving on a horizontal plane and so the potential energy 
P is zero. 
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𝑑

𝑑𝑡
(

𝜕𝐾

𝜕𝑞�̇�
) −

𝜕𝐾

𝜕𝑞𝑖
= 𝑁(𝑞)𝜏 + 𝐻𝑇(𝑞)𝜆         (9) 

Where i = 1,…,5 and 𝜆 is a Lagrange multiplier associated 
with the constraints, τ is the torque input vector. The kinetic 
energy of CLMR can be described as:  

𝐾 =  𝐾𝑝 + 𝐾𝑓𝑤 + 𝐾𝑟𝑤       (10) 

where 𝐾𝑝, 𝐾𝑓𝑤 , 𝐾𝑟𝑤 denote the kinetic energy of the body, front 

wheels and rear wheels of CLMR. According to Lagrange 
mechanics, the following matrices are adopted for CLMR models 
[2]. 

�̅�(𝑞)�̈� + �̅�𝑚(𝑞, �̇�)�̇� = 𝑁(𝑞)𝜏 + 𝐻𝑇𝜆                               (11) 

where: �̅�(q)ϵℝ5x5is a symmetric positive definite inertia 

trix,�̅�𝑚(q, q̇)ϵℝ5x5 is the centripetal and Coriolis matrix, 

𝑁(q)ϵℝ5x2 is the input transformation matrix, H(q)ϵℝ5x2 is a 

matrix associated with the nonholonomic constraints, and �̇� and 
�̈�denote the velocity and acceleration vectors, respectively. The 
matrices in (11) are found to be, 

M̅(q)

=

[
 
 
 
 
m                  0      −msinθ                   0       0
0                 m          mcosθ                0       0
−msinθ         mcosθ        Iθ                    2Iw 0

    0               0               2Iw                   2Iw 0

       0             0             0                        0  8Iw]
 
 
 
 

 

�̅�𝑚(𝑞, �̇�) =

[
 
 
 
 
0 0 −𝑚�̇�𝑐𝑜𝑠𝜃 0 0
0 0 −𝑚�̇�𝑠𝑖𝑛𝜃 0 0
0
0
0

0
0
0

0     0      0 0
0     0     0 0
0    0     0 0 ]

 
 
 
 

 

𝑁(𝑞) = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑑𝑠𝑖𝑛𝑐𝑜𝑠    0  1

0             0     0                1  0
]
𝑇

 

The general dynamic model of mobile robot with unknown 
disturbances can be described by the following equation: 

�̅�(𝑞)�̈� + �̅�𝑚(𝑞, �̇�)�̇� = 𝑁(q)𝜏 + 𝜏𝑑 + 𝐻𝑇𝜆       (12) 

where 𝜏𝑑  is a denoted bounded unknown disturbance including 
unstructured but not modelled dynamically. It would be more 
suitable to express the dynamic equations of motion in terms of 
internal velocities. Substituting (1) and its differentiation in (12) 

and pre-multiplying by 𝑆𝑇(𝑞), results in Equation (13). 

𝑀(𝑞)�̇� + 𝑉𝑚(𝑞, �̇�)𝑉 = N(q)𝜏+𝜏𝑣𝑑       (13) 

Where, 𝑀 = 𝑆𝑇�̅�𝑆𝜖ℝ2𝑥2, 𝑉𝑚 = 𝑆𝑇[ �̅��̇� + �̅�𝑚𝑆]𝜖ℝ2𝑥2, 

 N(q) =𝑆𝑇�̅�𝜖ℝ2𝑥2 ;𝜏𝑣𝑑 = 𝑆𝑇 ∗ 𝜏𝑑𝜖ℝ2𝑥2. 
The dynamic Equation (13) of the non-holonomic CLMR can 

be rewritten as: 

�̇�(𝑡) = −𝐴𝑉(𝑡) + 𝐵𝜏(𝑡)+𝑑        (14) 

where,  𝐴 = 𝑀−1𝑉𝑚, 𝐵 = 𝑀−1𝑁, 𝑑 = 𝑀−1𝜏𝑣𝑑 . In case of no 

disturbances (𝑑 = 0), Equation (14) reduces to 

�̇�(𝑡) = −𝐴𝑉(𝑡) + 𝐵𝜏(𝑡)       (15) 

3. SC DESIGN OF THE CAR LIKE MOBILE ROBOT 

In this section, the SC method is used in designing a dynamic 
tracking controller. The objective is to control the velocity and 

rotation rate to track the desired references. 
SC system is an invariant-manifold-based control method and 

can be applied for controlling nonlinear dynamic systems. In the 
sequel, we present the basics of SC synthesis for a nonlinear 
dynamic system described by: 

�̇� = 𝑓(𝑣, 𝑢, 𝑡)          (16) 

where v is the state vector, u is the control input vector, and t is 
time. The design process of SC algorithm for a nonlinear dynamic 
system can be summarised in the following steps as follows: 

 Define the macro variableσ (v, t), as a function of the system 
state. This macro variable will be used to determine a 
stabilising control law. 

𝑢(𝑣) = 𝑢(𝑣, 𝜎(𝑣))         (17) 

The system is forced by the controller to operate on the 

manifold: 𝜎 = 0. 

 Design a control law that would drive the system states onto 
the specified manifold and remain on it with an evolution 
constraint, which can be stated as a set of the dynamic 
evolution of macro-variables written as Equation (18): 

𝑇�̇�(𝑣, 𝑡) + 𝜎(𝑣, 𝑡) = 0         (18) 

where 𝑇 =  [𝑇1, 𝑇2]𝑇 is the rate of convergence vector of the 
macro-variables to manifolds 𝜎 = 0, and σ̇is the derivative of the 
aggregated macro variable by time. 

 Solve the system (17) with the evolution condition (18) to 
obtain the control law. 
To solve the differential Equation (18), we select a PI-type of 

the macro variable for 𝑣𝑐  and 
𝑐
. By doing so, the tracking errors 

would converge effectively. Hence, the macro variables defined 
are expressed as: 

𝜎(𝒗, 𝑡) = [
𝜎𝑣 (𝑡)

𝜎(𝑡)
] = [

𝑘1𝑒𝑣 + ∫ 𝑒𝑣
𝑡

0
(𝑡)𝑑𝑡

𝑘2𝑒̇ + ∫ 𝑒̇
𝑡

0
(𝑡)𝑑𝑡

]        (19) 

The derivation of the macro variable𝜎(𝑡) is:  

�̇�(𝒗, 𝑡) = [
�̇�𝑣  (𝑡)

�̇�(𝑡)
] = [

𝑘1�̇�𝑣 + 𝑒𝑣

𝑘2𝑒̇̇ + 𝑒̇
]        (20) 

In a more compact form, we write: 

�̇�(𝒗, 𝑡) = 𝑘�̇� + 𝑒          (21) 

where𝑘 = [𝑘1, 𝑘2]
𝑇 is the vector of positive coefficients and the 

vector of errors is 𝑒 = [𝑒𝑣 𝑒̇]𝑇, 𝑒𝑣 is the linear velocity error 
and 𝑒̇ is the steering velocity error. It is obvious that the tracking 

errors converge to if the parameters (𝑘1, 𝑘2) are selected 
properly. The control law τ is obtained by letting �̇�(𝑡) equal to 
zero. This is necessary for the state trajectory to stay on the 

synergetic surface. Since 𝑇�̇� + 𝜎 =0, therefore: 

�̇� =
−𝜎

𝑇
           (22) 

Substituting (22) in (21), yields 

�̇� = −
𝑒

𝑘
−

𝜎

𝑇
          (23) 

The velocities errors are defined as: 

𝑒 = 𝑉𝑑 − 𝑉          (24) 

For which the derivative is obtained: 
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�̇� = 𝑉�̇� − �̇�          (25) 

According to Equation (15), the system dynamic error is 
obtained as : 

�̇� = 𝑉�̇�(𝑡) +  𝐴𝑉(𝑡) − 𝐵𝜏(𝑡)        (26) 

Upon solving Eq. (26) for 𝜏while taking into account Equation 
(23), the SC for the car like mobile robot law can be found as: 

𝜏(𝑡) = 𝐵−1[
𝑒

𝑘
+

𝜎

𝑘𝑇
 + �̇�𝑑(𝑡) +  𝐴𝑉(𝑡)]       (27) 

where k is a diagonal matrix whose elements are 𝑘1 and 𝑘2.By a 

suitable selection of the design parameters 𝑘1 and 𝑘2, the final 
system can attain a suitable performance. Stability can be 
evaluated using the following Lyapunov function candidate 

𝐿1 =
1

2
𝜎𝑇𝜎           (28) 

This leads, after differentiation and using Eq. (21), to: 

�̇�1 = 𝜎𝑇(𝑘�̇� + 𝑒)           (29) 

Written finally as, 

�̇�1 = −
𝜎𝑇𝜎

𝑇
< 0          (30) 

Therefore, �̇�1 is confirmed negative and consequently, the ve-
locity tracking error will exponentially converge to zero. 

4. GWO OF PARAMETERS 

Grey Wolf Optimisation (GWO) is a smart swarm technique 
developed by Mirjalili et al. (2014), which mimics the leadership 
hierarchy of wolves which are well known for their group hunting. 
This algorithm mimics the social leadership hunting behavior of 
gray wolves in the wild. In this algorithm, the population is divided 
into four groups: alpha (α), beta (β), delta (δ) and omega (ω). The 
first three strongest wolves are considered α, β and δ which guide 
the other wolves (ω) to promising areas of the search space. 

4.1. 4.1. Objective function 

The objective function should be well chosen in order to find 
the unknown parameters of the designed control law leading to 
improve the performances of the control loop, such as the dynam-
ic precision, the overshoot and the static error. The objective 
function considered is based on an error criterion, which is often 
the case when evaluating controller performances, for our applica-
tions, we have carried out a series of tests. In the end, our choice 
fell on two criteria namely: The integral of the error square (ISE), 
the integral of the square of the time-weighted error (ITSE), the 
integral of the error absolute (IAE) and the integral of the absolute 
of the time-weighted error (TIAE): 

ISE=∫ 𝑒(𝑡)2𝑡

0
dt.            (31) 

ITSE=∫ 𝑡𝑒(𝑡)2𝑡

0
dt           (32) 

IAE=∫ |𝑒(𝑡)|
𝑡

0
dt           (33) 

ITAE=∫ 𝑡|𝑒(𝑡)|
𝑡

0
dt           (34) 

4.2. GWO basic algorithm 

This algorithm imitates the hunting mechanism of gray wolves 
in nature, this kind of wolves mostly prefer to live in groups. 
Where the group can consist of 5–12 wolves. Or in the GWO 
strategy, each individual in the group has a specific role. Moreo-
ver, one of the interesting realities of the social life of these wolves 
is a very strict social hierarchy structure in the group; the main 
stages of the hunting of this type of wolves are: 

 Tracking, chasing and approaching the prey  

 Pursuing, encircling and harassing the prey until it stops 
moving  

 Attack towards the prey  
When designing GWO the social hierarchy of wolves, we con-

sider the alpha (𝛼) the fittest solution, the second and third-best 

solutions are beta (𝛽) and delta (𝛿), respectively. The rest of the 
candidate solutions are assumed to be omega. In the GWO algo-

rithm, the hunting (optimisation) is guided by 𝛼, 𝛽 and 𝛿. 

The (𝜔) wolves follow these three wolves. 

4.2.1. Encircling prey 

Describe the grey wolves encircle prey during the hunt by the 
following equations: 

�⃗⃗� = |𝐶 . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|          (35) 

𝑋 (𝑡 + 1) = 𝑋 𝑝(𝑡) − 𝐴 . �⃗⃗�           (36) 

where: t indicates the current iteration, 𝐴 and 𝐶  are coefficient 

vectors,𝑋 p is the position vector of the prey,𝑋  indicates the posi-

tion vector of a grey wolf. The vectors are calculated as follows: 

𝐴 = 2𝑎 . 𝑟1⃗⃗⃗  − 𝑎            (37) 

𝐶 = 2𝑟2⃗⃗  ⃗            (38) 

where components of 𝑎  are linearly decreased from 2 to 0 over 

the course of iterations and 𝑟1 , 𝑟2 are random vectors in [0,1]. 

4.2.2. Hunting 

To search and identify the location of the prey and its sur-
roundings. It is generally via Alpha, Beta and Delta which can also 
participate from time to time. However, the ideal location of prey 
does not have any idea of it remains. To mathematically simulate 
the hunting behavior of grey wolves, we assume that alpha (best 
candidate solution) beta and delta have better knowledge of the 
likely location of prey. Therefore, we save the three best solutions 
obtained so far and force other agents (including omegas) to 
update their sites according to the position of the best search 
agents. 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗⃗⃗ . 𝑋 𝛼(𝑡) − 𝑋 (𝑡)|, 𝐷𝛽
⃗⃗ ⃗⃗  = |𝐶2

⃗⃗⃗⃗ . 𝑋 𝛽(𝑡) − 𝑋 (𝑡)|, 

 𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3

⃗⃗⃗⃗ . 𝑋 𝛿(𝑡) − 𝑋 (𝑡)|                                        (39) 

𝑋1
⃗⃗⃗⃗ = 𝑋 𝛼 − 𝐴1

⃗⃗⃗⃗ . (𝐷𝛼
⃗⃗ ⃗⃗ ⃗⃗  ⃗), 𝑋2

⃗⃗⃗⃗ = 𝑋 𝛽 − 𝐴2
⃗⃗ ⃗⃗ . (𝐷𝛽

⃗⃗⃗⃗⃗⃗  ⃗), 

 𝑋3
⃗⃗⃗⃗ = 𝑋 𝛿 − 𝐴3

⃗⃗ ⃗⃗ . (𝐷𝛿
⃗⃗ ⃗⃗ ⃗⃗  )          (40) 
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𝑋 (𝑡 + 1) =
𝑋1⃗⃗⃗⃗  ⃗+𝑋2⃗⃗⃗⃗  ⃗+𝑋3⃗⃗⃗⃗  ⃗

3
                (41) 

where: 𝑋 𝛼, 𝑋 𝛽 , 𝑋 𝛿  represents the position of the alpha, beta and 

delta respectively. X indicates the position of the current 

tion. 𝐶1
⃗⃗⃗⃗ , 𝐶2

⃗⃗⃗⃗ , 𝐶3
⃗⃗⃗⃗  : Are random vectors. 

4.2.3. Attacking prey (exploitation) 

The proceeding of the hunt is finished when the prey stops 
moving which is then attacked by the grey wolves. In the mathe-
matical model, the approaching towards the prey is made by a 

decreasein the value of a. Note that the fluctuation range of 𝐴  is 

also decreased by a. 𝐴  is a random value in the interval [-a,a], 
and for each iteration, the value of a is decreased from 2 to 0. 

When random values of 𝐴  is in the interval [1, 1], the next 
search agent position is between its current position and the 
position of the prey. For A value of |A|<1 forces the wolves to 
attack towards the prey. 

4.3. Algorithm process 

The GWO algorithm works according to the following steps: 

 Step 1: Initialise a random wolf population based on the upper 
and lower limits of the variables. 

 Step 2: Calculate the corresponding objective value for each 
Wolf.  

 Step 3: Choose the first three best wolves and save them 
under α, β and δ.  

 Step 4: Update the position of the rest of the population 
(wolves) using Equations (39), (40), and (41). 

 Step 5: Update of parameters a, A and C.  

 Step 6: Go to the 2nd step if the final criterion is not satisfied.  

 Step 7:  Returns the position of α as the approximate optimal 
optimum. 
Fig. 2 resumes the control strategy proposed in this work. 

 
Fig. 2. The system architecture of the closed-loop system 

5. FUZZY LOGIC TYPE 2 PARAMETERS FINDING  

Even though the GWO algorithm gives the parameters that 
are relatively suitable for the controller and can be viewed as a 
means to find the best choice than using trial and error, we re-
marked that the tracking is not as good as it was expected when 
disturbances are present. In this section, we use fuzzy logic type 2 

to estimate the parameters[𝑇1, 𝑇2, 𝑘1, 𝑘2]
𝑇at each sampling time 

to reject as much as possible the effect of the external disturb-
ances. In the presence of disturbances, the term d is added and 
Equation (14) presents, in this case, the system with added dis-
turbances: 

�̇�(𝑡) = −𝐴𝑉(𝑡) + 𝐵𝜏(𝑡)+𝑑                                                  (42) 

In this equation the vector of disturbances is d, such that:𝑑 =
[𝑑𝑣 𝑑̇].The elements of the this vector are bounded, i.e., 
|𝑑𝑣| < 𝜁𝑣 , |𝑑̇| < 𝜁̇. 𝑑𝑣 and 𝑑̇  represent the perturbations 

of linear and steering Velocities and 𝜁𝑣  and 𝜁̇ are positive con-

stants. In our study, we define 𝑑𝑣 and 𝑑̇ as: 

{
𝑑𝑣 = 𝑠𝑖𝑛𝑡(𝜋𝑡)
𝑑̇ = 𝑐𝑜𝑠𝑡(𝜋𝑡)

                                                                   (43) 

The fuzzifier is built using three Gaussian membership func-
tions for both input variables and three Gaussian membership 

functions for each of the four output variables as is depicted in 
Figs. 3–6. The following linguistic variables are assigned to each 
of the input and output fuzzy membership functions N, Z and of 
output S, M and B. Where the meaning of each linguistic variable 
should be clear from its mnemonic; in fact, N stands for negative, 
Z stands for Zero, P stands for positive, S stands for small, M 
stands for Mean and B stands for Big. 

 
Fig. 3. Fuzzy sets of input function (𝑒𝑣) 
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Fig. 4. Fuzzy sets of input function (𝑒̇) 

 
Fig. 5. Fuzzy sets of output function (𝐾𝑖) 

 
Fig. 6. Fuzzy sets of output function (𝑇𝑖) 

Fig. 7 shows the block diagram used for this purpose. In this 
system, the fuzzy inputs are the linear and steering velocity errors 

ev and eψ̇ while the fuzzy outputs are the SC parameters 

k1, k2, T1 and  T2. 
The derivation of the rules obeys many techniques such as 

that of the experience and skilled operator. In our case, we made 
use of the knowledge of the behavior of the systems towards the 
values of the different parameters, taking into consideration that 

𝑘𝑖 ≥ 0 and 𝑇𝑖 ≥ 0, i = 1, 2.  

 
Fig. 7. The system architecture of the closed-loop system by fuzzy logic 

Thus the parameters are gauged by the following fuzzy infer-
ence mechanism: 

 If 𝑒𝑣 is N and if 𝑒̇is N then 𝑘1 is S, 𝑎𝑛𝑑 𝑘2,is S and 𝑇1 is S 

and 𝑇2 is S. 

 If 𝑒𝑣 is N and if 𝑒̇is Z then 𝑘1 is S, 𝑎𝑛𝑑 𝑘2,is M and 𝑇1 is S 

and 𝑇2 is M. 

 If 𝑒𝑣 is N and if 𝑒̇is P then 𝑘1 is S, 𝑎𝑛𝑑 𝑘2,is B and 𝑇1 is S 

and 𝑇2 is B. 

 If 𝑒𝑣 is Z and if 𝑒̇is N then 𝑘1 is M, 𝑎𝑛𝑑 𝑘2,is S and 𝑇1 is M 

and 𝑇2 is S. 

  If 𝑒𝑣 is Z and if 𝑒̇is Z then 𝑘1 is M, 𝑎𝑛𝑑 𝑘2,is M and 𝑇1 is M 

and 𝑇2 is M. 

 If 𝑒𝑣 is Z and if 𝑒̇is P then 𝑘1 is M, 𝑎𝑛𝑑 𝑘2,is B and 𝑇1 is M 

and 𝑇2 is B. 

 If 𝑒𝑣 is P and if 𝑒̇is N then 𝑘1 is B, 𝑎𝑛𝑑 𝑘2,is S and 𝑇1 is B 

and 𝑇2 is S. 

 If 𝑒𝑣 is P and if 𝑒̇is Z then 𝑘1 is B, 𝑎𝑛𝑑 𝑘2,is M and 𝑇1 is B 

and 𝑇2 is M. 

 If 𝑒𝑣 is P and if 𝑒̇is P then 𝑘1 is B, 𝑎𝑛𝑑 𝑘2,is B and 𝑇1 is B 

and 𝑇2 is B. 

6. SIMULATION RESULTS 

A simulation study has been conducted to assess the effec-
tiveness of the proposed control. The SC performances are eval-
uated. The control objective is to make the linear and steering 
velocities converge to the desired references. To investigate the 
effectiveness of the proposed methodologies, numerical simula-
tions were carried out for the SC without disturbance. To test the 
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robustness of the approaches, disturbances were added in the 
second scenario of the simulation. 

Let us consider: 

 The desired linear velocity: 𝑉𝑑 = 1.0𝑚. 𝑠−1 and the desired 

steering velocity:̇
𝑑

= 1.0 𝑟𝑎𝑑. 𝑠−1.  

The mobile robot parameters are given in Tab. 1. 

Tab. 1. Parameters used in the simulation 

Mobile Robot 

𝐼𝜃(𝐾𝑔𝑚2) 𝐼𝑤(𝐾𝑔_𝑚2) m (kg) d(m) 

1.35 5*10-3 25 0.2 

This part presents the results of simulations of SC to judge the 
performances achieved by the manual gain, GWO algorithm and 
fuzzy logic type 2. We have used some metrics for this purpose to 
evaluate the mean linear velocity and the mean steering velocity 
errors. The tracking of the linear and steering velocities with the 
best gains are depicted in Figs. (8) and (9). The controller is tuned 
to have the fastest response. In these figures, one can figure out 
how fast is the response of the mobile robot to reach the refer-
ence velocities. To highlight this aptitude, trajectories errors are 
added in Figs. (10) and (11) while figures (12) and (13) present 
the control torques (14) and (15) present the macro-variable 
function. 

 
Fig. 8. Linear velocity 

 

Fig. 9. Steering velocity 

 
Fig. 10. Tracking error of linear velocity 

 
Fig. 11. Tracking error of steering velocity 

 
Fig. 12. Generated torque1 

We should point out that the SC law used the best optimal pa-
rameters found by the GWO algorithm and fuzzy logic type2. 
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Fig. 12. generated torque2 

 
Fig. 14. Macro-variable1 

 
Fig. 15. Macro-variable2 

In fact, after execution of the algorithm for 25 generations, us-
ing the hyper-parameters of the GWO given in Table 2, we report 
in Table 3 the resulting optimum values of the gains and the rate 
of convergences for two chosen objective functions given by 
expressions (31), (32), (33) and (34). As for thesake of compari-
son, we start our simulation by trial and error on the unknown 
parameters. We tried to fix them manually and look for the best 
performances as it is depicted in Tab. 2. For each set of the pa-

rameters: 𝑘1, 𝑘2, 𝑇1and 𝑇2, we compare the different metrics 
defined in the first column of Tab. 3. As one can notice, the time 
taken for the robot to start tracking the desired velocities is within 
0.5 swith a convergence time of about 3 s. The rising time of the 
steering velocity is decreased when its rate of convergence is 
reduced and the value of the gain is increased. However, the time 
of convergence and the mean errors of velocities become small 
as well as the mean error of the steering velocity. From Tab. 3, we 
can see that the best parameters are those given in column three, 
compromised by the time of convergence. We notice also that the 
time taken for the robot to start tracking the desired velocities is 
very fast with a convergence time of almost 3 s. The rising time of 
the steering velocity can decrease when its rate of convergence is 
reduced and the gain is increased. However, one can remark that 
the values plugged in this table were very hard to find by trial and 
error. Therefore, we cannot assert that these parameters are the 
best ones to span the whole parameter space and choose the 
values that can give the best performances automatically. In this 
case, we ran the GWO algorithm and recorded the performances 
found and plugged them in Table II. To observe the effect of the 
parameter values, a comparison between the results obtained 
using manual trials, the GWO algorithm and those of Fuzzy logic 
type 2. As it can be seen, that the Fuzzy logic type 2 and the 
value of GWO obtained from the integral of the error absolute 
achieved the best records. 

Moreover, to test the robustness of each of the approaches, 
we inject some disturbances into the system. By trial error, we 
adjust manually the parameters until we observe that the veloci-
ties approach as close as possible their references. Despite the 
optimum parameters found by the integral of the square of the 
time-weighted error TISE of the GWO algorithm, it remains to 
enable to eliminate residual disturbances. To arrive at a satisfac-
tory objective. The SC based on fuzzy logic type 2 parameter 
finding has solved the problem. In fact, the ability to find the ap-
propriate parameter values at each sampling time helped in re-
ducing enormously the effect of disturbances, where, one can 
observe an excellent response of tracking the forward and steer-
ing velocities. 

It can be seen that the system operates on the manifold 

 =  0. The convergence rate of the dynamical system is deter-
mined by the value of the parameter T, the smaller the T value, 
the higher the convergence rate, the figures of simulation demon-
strate that the convergence rate can be controlled. 

Tab. 2. GWO parameters of synergetic 

Objective function IAE ITAE ISE TISE 

Gain 
k1 =  480 

k2 =  480 

k1 = 401 

k2 = 500 

k1 = 455 

k2 = 350 

k1 = 455 

k2 = 497 

The rate of convergence 
T1 = 0.011 

T2 = 0.00 

T1 = 0.01 

T2 = 0.0 

T1 = 0.02 

T2 = 0.01 

T1 = 0.004 

T2 = 0.008 
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Tab. 3. Mean error of synergetic control 

 

aaa 
7. CONCLUSION 

In this paper, an optimised SC is proposed. The SC is de-
signed to track the forward and steering velocities of a CLMR. The 
control law obtained involved parameters that should be well 
tuned to get the best performances. The tuning has been per-
formed using the GWO optimisation algorithm and fuzzy logic type 
2. The simulation confirmed a rapid convergence of the control 
law. Moreover, applying this control law helps in avoiding the 
chattering problem while assuring asymptotical stability. To arrive 
at the best performances, we used the GWO algorithm and fuzzy 
logic type 2 to get the optimised parameters of the control law. 
The SC law based on fuzzy adaptive parameters can choose the 
appropriate values of the parameters to best remove the external 
disturbances, which demonstrates its robustness. The results 
obtained are very satisfactory and promise a lot in the use of this 
control law in driving an autonomous vehicle in real-time condi-
tions. 

These control laws of linear and steering velocity can assure 
the asymptotical stability of the system by applying the Lyapunov 
theory, and proves that the controller is stable for any combination 
of the error states. The advantage of this control law is to elimi-
nate the disturbances due to the dynamic model, such that the 
error states of the robot converge to zero. 
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