PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of the dynamic properties of a column with step-variable flexural stiffness in terms of structural mounting damping and internal damping

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of the work are the free vibrations of a slender columns subjected to a force directed towards the positive pole. This column can model structures found in the engineering, mining or construction industries, machine parts, bridge elements or support structures. The analyzed system is characterized by bending stiffness variable in steps, modelled taking into account the constant volume condition. The model takes into account the flexibility of structural nodes by supporting the loaded end of the column with a spring with linear characteristics. The problem was formulated on the basis of the Bernoulli-Euler’s theory and then solved using the variational method (Hamilton’s principle). Determination of differential equations o motion of individual segments of the column and their solutions, taking into account the boundary conditions, made it possible to determine the transcendental equation giving the vibration frequency values. The influence of internal damping and structural damping in the mounting on the change in natural vibration frequency was considered in detail. For comparative purposes, the first two frequencies of the tested system and the comparative system (without damping), with different directions of external load and column geometry (variable cross-sections), were compared. Based on the presented results, the impact of damping on the dynamics of the system was determined and it was indicated as one of the ways to control the dynamic properties. The presented analysis of vibrations of damped beams is a starting point for further research on other shapes of slender systems, ultimately systems with continuous change of cross-section.
Rocznik
Strony
222--229
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, 42-201 Czestochowa, Dabrowskiego 73, Poland
Bibliografia
  • 1.Abbas, Q., Nawaz, R., Yaqoob, H., Ali, H. M., Jamil, M. M., 2025. Nonlinear vibration analysis of cantilever beams: Analytical, numerical and experimental perspectives. Partial Differential Equations in Applied Mathematics, 13, 101115, DOI:10.1016/j.padiff.2025.101115
  • 2.Avdonin, S., Edward, J., Ivanow, S. A., 2025.Null-controllability for the beam equation with structural damping. Part I: Distributed control. Journal of Differential Equations, 421, 73-103, DOI:10.1016/j.jde.2024.11.052
  • 3.Biswas, S., Banerjee, A., Bera, K. K., 2024. An analytical and experimental investigation into overall dissipation of flexural mode in a periodically damped beam. Mechanics of Materials, 198, 105113, DOI: 10.1016/j.mechmat.2024.105113
  • 4.Bold M., Sochacki W., 2018. Damped vibrations of the Γ type frame with open cracks. Journal of Vibroengineering, Vol. 20, Issue 1, p. 215-224, DOI: 10.21595/jve.2017.18733
  • 5.Bournine, H., Wagg, D. J., Neidls, S. A., 2011. Vibration damping in bolted friction beam-columns. Journal of Sound and Vibration, 330, 1665-1679, DOI:10.1016/j.jsv.2010.10.022
  • 6.Cao, P., Niu, K., Sun, J., Zhao, S., Liu, Y., 2022. Reordering of vertical vibration modes in an axially compressed beam on a Winkler foundation. Journal of Sound and Vibration, 526, 116841, DOI:10.1016/j.jsv.2022.116841
  • 7.Chen, L., Liu, Z., Nagarajaiah, S., Sun, L., Zhao, L., Cui, W., 2022. Vibration mitigation of long-span bridges with damped outriggers. Engineering Structures, 271, 114873, DOI:10.1016/j.engstruct.2023.114873
  • 8.Dai, Q., Zheng, C., Liu, Y., Han, Q., Qin, Z., Chu, F., 2024. Dynamic modeling and parametric instability analysis of internally damped rotating composite shafts in internal and rotating frames. Aerospace Science and Technology, 151, 109253, DOI: 10.1016/j.ast.2024.109253
  • 9.Dekemele, K., Giraud-Audine, C., Thomas, O., 2024. A piezoelectric nonlinear energy sink shunt for vibration damping. Mechanical Systems and Signal Processing, 220, 111615, DOI:10.1016/j.ymssp.2024.111615
  • 10.Estakhraji, S. I. Z., Wall, M., Capito, J., Allen, M., 2023. A through comparison between measurements and prediction of the amplitude dependent natural frequencies and damping of a bolted structure. Journal of Sound and Vibrations, 544, 117397, DOI:10.1016/j.jsv.2022.117397
  • 11.Friswell M. I., Lees A. W., 2001. The modes of non-homogeneous damped beams. Journal of Sound and Vibration, Vol. 242, Issue 2, p. 355-361, DOI: 10.1006/jsvi.2000.3323
  • 12.Franković, T., Jelenić, G., Bjelanović, A., 2022. Material Damping Prediction in Timber Beams Based on Timoshenko Free-Free Beam model. Structural Engineering, KSCE Journal of Civil Engineering, 26(5), 2315-2327, DOI:10.1007/s12205-022-1010-8
  • 13.Garus, S., Garus, J., Sochacki, W., Nabiałek, M., Petru, J., Borek, W., Sofer, M., Kwiatoń, P.,(2023). Influence of material distribution and damping on the dynamic stability of Bernoulli - Euler beams. Bulletin of the Polish Academy of Sciences, Technical Sciences, 71(4), e145567, DOI: 10.24425/bpasts.2023.145567
  • 14.Guo, Y., Li, L., Zhang, D., 2019. Dynamic modeling and vibration analysis of rotating beams with active constrained layer damping treatment in temperature field. Compisite Structures, 226, 111217, DOI:10.1016/j.compstruct.2019.111217
  • 15.Hoffmeyer D., Hogsberg, J., 2020. Damping of coupled bending-torsion beam vibrations by spatially filtered warping position feedback. Journal of Sound and Vibration, 477, 115323, DOI:10.1016/j.jsv.2020.115323
  • 16.Jin, G., Zhao, Z., Liu, B., Cun, W., Zhao, Z., Hou, M., Chen, G., 2021. Design of a particle damper and experimental study on vibration damping of the pipeline. Advances in Mechanical Engineering, 13(9), 1-14, DOI:10.1177/1687814021044923
  • 17.Kirillov O. N., Seyranin A. O., 2005. The effect of small internal and external damping on the stability of distributed non-conservative systems. Journal of Applied Mathematics and Mechanics, 69, 529-552.
  • 18.Lei, X., Wu, C., Wu, H., 2017. A novel composite vibration control method using double-decked floating raft isolation system and particle damper. Journal of Vibration and Control, 24, 19, 4407-4418, DOI: 10.1177/1077546317724967
  • 19.Li, Y., Xu, J., Ma, K., Yu, H., 2022. Seismic behavior of coupled wall structure with steel and viscous damping composite coupling beams. Journal of Building Engineering, 52, 104510, DOI:10.1016/j.jobe.2022.104510
  • 20.Lu, Z., Liao, Y., Huang, Z., 2020. Stochastic response control of particle dampers under random seismic excitation. Journal of Sound and Vibration, 481, 115439, DOI: 10.1016/j.jsv.2020.115439
  • 21.Liang J. W., Feeny B. F., 1998. Identifying Coulomb and viscous friction from free vibration decrements. Nonlinear Dynamics, 16, 337-347.
  • 22.Manolis, G. D., Dadoulis, G. I., Katakalos, K. V., 2023. Experimental evaluation of damping in beams using the acceleration generalized coordinates: A comparison of the FDD and PCA methods. Soil Dynamics and Earthquake Engineering, 175, 108219, DOI:10.1016/j.soildyn.2023.108219
  • 23.Pagnini L., Orlando, A., Repetto, M. P., 2025. Damping assessment of monopole steel structures through full-scale experiments. Engineering Structures, 327, 119627, DOI: 10.1016/j.engstruct.2025.119627
  • 24.Pan, H., Wang, H., Wang, T., Pan, P., 2025. Development and experimental study of a repleceable double stage coupling beam damper. Engineering Structures, 325, 119392, DOI: 10.1016/j.engstruct.2024.119392
  • 25.Prasad, B. B., Duvigneau, F., Juhre, D., Woschke, E., 2022. Application of Particle Dampers on a Scaled Wind Turbine Generator to Improve LowFrequency Vibro-Acoustic Behavior. Applied Sciences, 12, 671, DOI: 10.3390/app12020671
  • 26.Sheng, G. G., Wang, X., 2019. Nonlinear forced vibration of functionally graded Timoshenko microbeams with thermal effect and parametric excitation. Internationl Journal of Mechanical Sciences, 155, 405-416, DOI:10.1016/j.ijmecsci.2019.03.015
  • 27.Sochacki W., Bold M., 2016. Transverse and longitudinal damped vibration of the GAMMA type frame. Journal of Applied Mathematics and Computational Mechanics, 15(2), 147-155. DOI:10.17512/jamcm.2016.2.16
  • 28.Szmidla, J., Jurczyńska, A., 2024. Advancing the dynamic properties of a column with variable flexural stiffness in terms of structural mounting damping, external and internal damping. Journal of Applied Mathematics and Computational Mechanics, 23(3), 109-117, DOI: 10.17512/jamcm.2024.3.10
  • 29.Szmidla J, Jurczyńska A, Ulewicz R. 2025. Dynamic Stability Enhancement of Columns through Material Distribution Optimization Strategies. Materials 18, 2167, https://doi.org/10.3390/ma18102167
  • 30.Tai, W.-C., 2025. Damping-desrabilized parametri resonances of a rotating beam magnetically plucking a stationary beam. Journal of Sound and Vibration, 597, 118798, DOI:10.1016/j.jsv.2024.118798
  • 31.Wu, J., Titurus, B., 2021. Damping augmentation of a rotating beam-tendon system via internally placed spring-damper elements Journal of Sound and Vibrations, 510, 116315, DOI:10.1016/j.jsv.2021.116315
  • 32.Xu, J., Liang, J., Han, J., Zhang, Y, 2025. Experimental investigation on the seismic performance of T-shaped connected modular beam-column connection. Engineering Structures, 333, 120108, DOI: 10.1016/j.engstruct.2025.120108
  • 33.Yi, J., Xu, W., 2023. Effect on damping on the seismic response of long-period structures considering crossover phenomena. Engineering Structures, 293, 116627, DOI:10.1016/j.engstruct.2023.116627
  • 34.Yu J., Luo, C., Wang, C., Sun, H., Yin, B., 2025. Theoretical and experimental study on vibration control of a floating offshore wind turbine using damping cables. Ocean Engineering, 319, 120261, DOI:10.1016/j.oceaneng. 2024.120261
  • 35.Yuzbasi, J., Arslan, H. M., 2025. Applied element method and Finite element method for progressive collapse assessment: A comparative study on the influence of slab types, thicknesses, and damping via three incremental column removals. Structures, 73, 108358, DOI: 10.1016/j.istruc.2025.108258
  • 36.Zhang, H., Li, A., Su, Y., Xu, G., Sha, B., 2024. Viscoelastic dampers for civil engineering structures: a systematic review of constructions, materials and applications. Journal of Building Engineering, 96, 110597, DOI: 10.1016/j.jobe.2024.110597
  • 37.Zhang, J., Hu, Y., Jiang, J., Zan, H., 2022. Damping Characteristics of Cantilever Beam with Obstacle Grid Particle Dampers. Machines, 10, 989, DOI: 10.3390/machines10110989
  • 38.Zhao, X., Li, S. Y., Zhu, W. D., Li, Y. H., 2022. Nonlinear forced vibration analysis of a multi-cracked Euler-Bernoulli curved beam with inclusion of damping. Mechanical Systems and Signal Processing, 180, 109147, DOI:10.1016/j.ymssp.2022.109147
  • 39.Zhou, S., Song, G., Wang, R., Ren, Z., Wen, B., 2017. Nonlinear dynamic analysis for coupled vehicle-bridge vibration system on nonlinear foundation. Mechanical Systems and Signal Processing, 87, 259-578, DOI:10.1016/j.ymssp.2016.10.025
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a65ca518-8e1f-4ceb-8620-188de1a693fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.