PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Digital technologies in the accounting information system supporting decision-making processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the article is to characterize the possibilities of improving the accounting information system supporting decision-making processes in the enterprise with the use of selected digital technologies with particular emphasis on artificial intelligence. Design/methodology/approach: Basic research methods include critical analysis of literature. Simulation models of the stock market game using deep learning were also used. In addition, intensive computational experiments were carried out to analyze the quality of the solutions, which were determined by the proposed deep learning methods using artificial neural networks based on short-term memory (LSTM). The research presented in this article was verified by simulating the possibility of using deep learning. Findings: The results exceeded the estimates described in the literature. The average error is estimated to be less than 3% when using the LSTM network. It should therefore be assumed that other deep learning paradigms will also be an effective tool in financial systems. The results of theoretical research and numerical experiments confirmed that the impact of selected digital technologies on the improvement of the accounting information system supporting decision-making processes is significant. Practical implications: The results are the basis for formulating recommendations regarding the possibility of using the analyzed digital technologies in the accounting information system, supporting decision-making processes in the enterprise. They can also serve as an example of the digital transformation of the enterprise accounting information system. Social implications: The obtained results indicate significant opportunities to improve the accounting information system supporting decision-making processes. This situation suggests the need to implement the latest achievements of digital technologies in the accounting information system for the effective collection and processing of a growing amount of data. A clear presentation, ongoing monitoring and precise prediction of future results are the basis for making effective decisions based on precise data analysis, and not based on intuition or experience of the decision maker. Originality/value: The authenticity of the study results stems from the clear ideas for the effective use of digital technologies, in particular, deep learning with the use of artificial neural networks in the cloud to improve the accounting information system, especially in the field of estimating forecasted values.
Rocznik
Tom
Strony
57--89
Opis fizyczny
Bibliogr. 117 poz.
Twórcy
  • Sopot University of Applied Sciences; Faculty of Economics and Finance
Bibliografia
  • 1. Aldrich, E., Fernández-Villaverde, M., Gallant, J.R., Rubio-Ramírez, A., Juan, F. (2011). Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors. Journal of Economic Dynamics and Control. Elsevier, Vol. 35(3), p. 387.
  • 2. Anandarajan, M.A., Srinivasan, C.A. (2004). Business Intelligence Techniques - A Perspective from Accounting and Finance. Berlin: Springer.
  • 3. Antonowicz, P., Malinowska, E., Siciński, J., Zaremba, U. (2021). The enterprise in the face of social, economic and technological changes. Aspra (in Polish).
  • 4. Aslam, Rasool, Jiang, Qu, Q. (2021). LSTM based Model for Real-time Stock Market Prediction on Unexpected Incidents. RCAR, p. 1149.
  • 5. Atsalakis, G., Valavanis, K. (2013). Surveying stock market forecasting techniques - Part I: Conventional methods in Computation Optimization in Economics and Finance Research Compendium. New York: Nova Science Publishers.
  • 6. Awad, M., Khanna, R. (2015). Support Vector Regression: Efficient learning machines. Berkeley, CA: Apress, p. 223.
  • 7. Baars, H., Kemper, H.G. (2008). Management Support with Structured and Unstructured Data - An Integrated Business Intelligence Framework. Information Systems Management, Vol. 25, No. 2, pp. 132-148.
  • 8. Baesens, B., Setiono, R., Mues, C., Vanthien, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management Science, Vol. 49, No. 3, p. 317.
  • 9. Balicka, H. (2019). Cloud computing and selected models of deep learning in banking Space, Economy, Society, No. 16/II, pp. 57-88.
  • 10. Balicka, H. (2020). An influence of deep learning and the internet of things on directions of development of integrated financial systems supporting smart cities for green economy. Space, Economy, Society, No. 17/I, pp. 77-102.
  • 11. Balicka, H., Balicki, J., Dryja, P., Tyszka, M. (2018). Social media and efficient computer infra-structure in smart city. In: O. Dębicka, W. Rogula-Kozłowska, P. Rogula-Kopiec (Eds.), Proc. of the 10th Jubilee Scientific Conference - InfoGlob 2018, SHS Web of Conferences, vol. 57, EDP Sciences, Gdańsk - Nynäshamn, Poland, September 18-20.
  • 12. Balicka, H., Balicki, J., Dryja, P., Tyszka, M. (2019), Big Data and the Internet of Things in Edge Computing for Smart City. In: K. Saeed, R. Chaki, V. Janev (Eds.), Computer Information Systems and Industrial Management. CISIM 2019. Lecture Notes in Computer Science, Vol 11703 (pp. 99-109). Cham: Springer.
  • 13. Balicka, H., Balicki, J., Korłub, W., Paluszak, J., Pastewski, M., Przybyłek, P., Zadroga, M., Zakidalski, M. (2013). Artificial intelligence methods to support banking information systems. In: K. Krefta, D. Wach, J. Winiarskiego (Eds.), IT systems in the economy (pp. 125-138). Gdansk: University Gdansk Pub. (in Polish).
  • 14. Balicka, H., Balicki, J., Korłub, W., Paluszak, J., Zadroga, M. (2014). Supercomputers to support economic processes with particular emphasis on the banking sector. Contemporary Economy, Vol. 4, Iss. 5, pp. 1-16.
  • 15. Balicka, H., Balicki, J., Zakidalski, M. (2022). Intelligent Computing Clouds in Smart City. In: J. Duda, T. Bernat (eds.), Science and Business - Common Challenges. Routledge: Taylor & Francis Group (in press).
  • 16. Balicki, J., Balicka, H., Dryja, P. (2021). Big Data from Sensor Network via Internet of Things to Edge Deep Learning for Smart City. In: K. Saeed, J. Dvorský (Ed.), Computer Information Systems and Industrial Management. CISIM. Lecture Notes in Computer Science, Vol. 12883 (pp. 357-368). Cham: Springer.
  • 17. Balicki, J., Balicka, H., Dryja, P., Tyszka, M. (2020). Multi-criteria Differential Evolution for Optimization of Virtual Machine Resources in Smart City Cloud. In: K. Saeed, J. Dvorský (Eds.), Computer Information Systems and Industrial Management. CISIM. Lecture Notes in Computer Science, Vol. 12133 (pp. 332-344). Cham: Springer.
  • 18. Balicki, J., Korłub, W., Tyszka, M. (2016). Harmony search to self-configuration of fault tolerant grids for big data. In: Z. Kowalczuk, Advances in Intelligent Systems and Computing, Advanced and Intelligent Computations in Diagnosis and Control, Vol. 386 (pp. 411-424).
  • 19. Balicki, J. (2009). Multi-criterion decision making by artificial intelligence techniques. Proceedings on the 8th Int. Con. on Artificial Intelligence, Knowledge Engineering and Data Bases. Cambridge, p. 322.
  • 20. Balicki, J., Przybyłek, P., Zadroga, M., Zakidalski, M. (2013). Sztuczne sieci neuronowe oraz metoda wektorów wspierających w bankowych systemach informatycznych [Artificial neural networks and the support vector method in banking information systems]. Contemporary Economy, Vol. 4, Iss. 4, pp. 1-14.
  • 21. Balicki, J., Szymański, J., Kępa, M., Draszawka, K., Korłub, W. (2015). Improving effectiveness of svm classifier for large scale data. Proc. on 14th Int. Conf., ICAISC 2015, Zakopane, Poland, June 14-18, 2015, Part I, Lecture Notes in Computer Science, Vol. 9119, p. 677.
  • 22. Bartnik, A. (2016). Wpływ nowoczesnych technologii informatycznych na konkurencyjność przedsiębiorstw. Roczniki Kolegium Analiz Ekonomicznych SGH, No. 40, pp. 453-468.
  • 23. BCG (2022). Ranking the Top 50 most innovative companies of 2021, https://www.bcg.com/publications/2021/most-innovative-companies-overview, 10.07.2022.
  • 24. Beath, C., Becerra-Fernandez, I., Ross, J., Short, J. (2012). Finding value in the data explosion. MIT Sloan Management Review, 53(4), pp. 18-20.
  • 25. Benbouzid, B. (2019). To predict and to manage. Predictive policing in the United States. Big Data & Society, 6(1), pp. 1-13.
  • 26. Bhimani, A., Willcocks, L. (2014). Digitisation, Big Data and the transformation of accounting information. Accounting and Business Research, No. 44(4), pp. 469-490.
  • 27. Bosse, T., Siddiqui, G.F., Treur, J. (2010). Supporting Financial Decision Making by an Intelligent Agent Estimating Greed and Risk. Proc. the IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelligent Agent Technology, Vol. 3, Aug. 31-Sept. 3, p. 367.
  • 28. Brabazon, A., Kampouridis, M., O’Neill, M. (2020). Applications of genetic programming to finance and economics: past, present, future. Genetic Programming and Evolvable Machines, No. 21, pp. 33-53.
  • 29. Brown, C. (2011). Technical Analysis for the Trading Professional, Second Edition: Strategies and Techniques for Today’s Turbulent Global Financial Markets. New York: The McGrawHill Companies, p. 226.
  • 30. Brzóska, J., Knop, L., Olko, S. (2017). Comparative analysis and assessment for business models of steel companies dynamics. METAL 26th International Conference on Metallurgy and Materials, Conference Proceedings, Conference paper, EID: 2, p. 2.
  • 31. Chen, S.H., Kuoand, T.W., Hoi, K.M. (2006). Genetic Programming and Financial Trading: How Much about What we Know. 4th NTU International Conference on Economics, Finance and Accounting, April 2006, p. 2.
  • 32. CIMA (2008). Improving decision making in organisations. Unlocking business intelligence, https://www.cimaglobal.com, London, 22.06.2022.
  • 33. Cloud solutions for organizations interested in business analytics, https://businessintelligence.pl/cloud-based-solutions-for-organizations-interested- business-analytics, 15.06.2022.
  • 34. Czajkowski, W., Kuzior, A. (2019). Filozofia umysłu a sztuczna inteligencja [Philosophy of mind and artificial intelligence]. Etyka Biznesu i Zrównoważony Rozwój. Interdyscyplinarne Studia Teoretyczno-Empiryczne, No. 4, pp. 5-18.
  • 35. Davis, E.P., Karim, D. (2008). Comparing early warning systems for banking crises. Journal of Financial Stability, Vol. 4, No. 2, p. 89.
  • 36. DESI for 2021, https://digital-strategy.ec.europa.eu/en/policies/desi-poland, 20.06.2022.
  • 37. Dziembek, D. (2016). Cloud Computing - characteristics and areas of application in enterprises. In: R. Knosala (Ed.), Innovations in management and production engineering. Opole: Publishing House of the Polish Production Management Society.
  • 38. Enterium (2022). What is Power BI? https://enterium.pl/ what-is-power-bi, 5.07.2022.
  • 39. European Commission (2.12.2015). Closing the loop - EU action plan for the circular economy. Communication to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM(2015) 614 final, Brussels.
  • 40. Eurostat. http://ec.europa.eu/eurostat, 12.06.2022.
  • 41. Fanning, K., Centers, D.P. (2016), Blockchain and its coming impact on financial services. Journal of Corporate Accounting & Finance, No. 27(5).
  • 42. Folwarski, M. (2019). The FinTech sector on the European banking services market - competitive and regulatory challenges. Warsaw: Poltext (in Polish).
  • 43. Folwarski, M. (2021). Digital innovations in banking and the digital and financial integration of society. Cracow: Jagiellonian University Pub. (in Polish).
  • 44. Frankel, J.A., Rose, A.K. (1996). Currency crashes in emerging markets: an empirical treatment. Journal of International Economics, Vol. 41, No. 3-4, p. 355.
  • 45. Gartner (2021). Magic Quadrant for Analytics and Business Intelligence Platforms, https://www.gartner.com/doc/reprints?id=1-1YOXON7Q&ct=200330&st=sb, 15.06.2022.
  • 46. Gartner (2022). Top Strategic Technology Trends for 2022. 12 Trends Shaping the Future of Digital Business, https://www.gartner.com/smarterwithgartner/speed-up-your-digital- business-transformation, 18.02.2022.
  • 47. Gately, E. (1999). Neural networks. Financial forecasting and design of transaction system. Warsaw: WIG-Press, p. 232.
  • 48. German Credit Dataset, http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+ Credit+Data%29, 20.06.2022.
  • 49. Gierusz, B. (2018). A manual for self-study of accounting. Gdansk: ODDK.
  • 50. Gierusz, B., Martyniuk, T. (2017). Porównywalność informacji sprawozdawczych w świetle założeń koncepcyjnych MSSF. Finanse, Rynki Finansowe, Ubezpieczenia, No. 4(88), pp. 231-240.
  • 51. Gierusz, J., Koleśnik, K. (2021). Chart of accounts with comment. Gdansk: ODDK, p. 27 (in Polish).
  • 52. Gregor, B., Kaczorowska-Spychalska, D. (2020). Technologie cyfrowe w biznesie. Przedsiębiorstwa 4.0 a sztuczna inteligencja [Digital technologies in business. Enterprises 4.0 and artificial intelligence]. Warszawa: PWN.
  • 53. Hałasik-Kozajda, M., Olbryś, M. (2020). Analysis of the evolution and structure of the fintech sector. Bank and Credit, No. 5, pp. 549-585.
  • 54. Han, J., Kamber, M., Pei, J. (2016). Data mining: Concepts and techniques. Elsevier: Morgan Kaufmann.
  • 55. Hanschel, E., Monnin, P. (2005). Measuring and forecasting stress in the banking sector: evidence from Switzerland. Investigating the Relationship between the Financial and Real Economy, BIS Papers, No. 22, p. 435.
  • 56. Henke, N., Wilmott, P. (2018). Digital trends and observations from Davos 2018. McKinsey Digital, https://www.mckinsey.com/business-functions/digital-mckinsey/our- insights/digital-blog/trends-and-observations-from-davos-2018, 16.06.2022.
  • 57. Henley, W.E., Hand, D.J. (1996). A k-nearest-neighbour classifier for assessing consumer credit risk. The Statistician, Vol. 45, Iss. 1, p. 77.
  • 58. IMARC Group Analysts (2022). Green Data Center Market Size: Global Trends, Share, Size, Growth and Outlook. Report, https://www.imarcgroup.com/green-data-center- market, 10.07.2022.
  • 59. Inmon, W.H., Strauss, D., Neushloss, G. (2008). The Architecture for the Next Generation of Data Warehousing. Amsterdam: Elsevier Science.
  • 60. Jonek-Kowalska, I., Nawrocki, T.L. (2022). Is Innovation a Risky Business? A Comparative Analysis in High-Tech and Traditional Industries in Poland. Journal of Open Innovation. Technology, Market, and Complexity, 8, No. 3, p. 155.
  • 61. Kapeliński, W. (2014). Directions for the development of cloud computing according to the assumptions of the European Commission. In: A. Nowicki, D. Jelonek (Eds.), Information technologies in creating entrepreneurship. Publishing Section of the Faculty of Management of the Czestochowa University of Technology, pp. 60-61.
  • 62. Kisielnicki, J. (2018). Blockchain as a technology for the flow of information and knowledge in project management. Organization Review, No. 8, pp. 3-10.
  • 63. Klinger, B., Szczepański, J. (2017). Blockchain - history, features and main areas of application. Man in Cyberspace, No. 1, pp. 11-27.
  • 64. Kloock, J. (1997). Betriebliches Rechnungswesen. Germany: Josef Eul Verlag GmbH.
  • 65. Kotecha, K., Kumar, S., Bongale, A., Suresh, R. (2022). Industry 4.0 in Small and Medium¬Sized Enterprises (SMEs). Opportunities, Challenges and Solutions. Milton Park, in Oxfordshire: Taylor & Francis Ltd.
  • 66. Kubik, K. (2016). Innowacyjność menedżerska jako podstawa rozwoju i efektywności przedsiębiorstwa [Managerial innovation as the basis for the development and efficiency of the enterprise]. Scientific Papers of the University of Natural Sciences and Humanities in Siedlce, Series: Administration and Management, Vol. 36, No. 109, pp. 121-134 (in Polish).
  • 67. Kumar, K., Haider, T.U. (2021). Enhanced Prediction of Intra-day Stock Market Using Metaheuristic Optimization on RNN-LSTM Network. New Gener. Comput, Vol. 39(1), pp. 231-272.
  • 68. Kumar, S., Tiwari, P., Zymbler, M. (2019). Internet of Things is a revolutionary approach for future technology enhancement: a review. Journal of Big Data, No. 6, p. 111.
  • 69. Łada, M., Burnet-Wyrwa, W. (2015). Rozwój samoobsługowych systemów Business Intelligence a zmiany w rachunkowości zarządczej [Self Service Business Intelligence in Managerial Accounting Systems]. Studia Ekonomiczne/Uniwersytet Ekonomiczny w Katowicach, Vol. 245, pp. 133-141.
  • 70. Lech, P. (2021). Ambiguity in Information Systems Projects - the case of enterprise system implementations. AMCIS 2021 Proceedings, 3. https://aisel.aisnet.org/amcis2021/it_projmgmt/it_projmgmt/3, 23.06.2022.
  • 71. Majerowska, E., Gostkowska-Drzewicka, M. (2021), Czynniki struktury kapitału oraz rentowności spółek giełdowych: ujęcie teoretyczne i empiryczne. Gdańsk: Wyd. Uniwersytetu Gdańskiego.
  • 72. Malara, Z. (2006). A company in a global economy. The challenges of the present day. Warsaw: PWN, p. 50.
  • 73. Manyika J. et al. (2013). Discruptivetechnologies: Advances that will transform life, business and the global economy. McKinsey Global Institute, Report, https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/disruptive- technologies, 16.06.2022.
  • 74. Marszycki, M. (2022). Które specjalizacje IT są obecnie najbardziej pożądane na rynku? https://itwiz.pl/which-specializations-it-are-currently-most-desired-on-the-market, 30.03.2022.
  • 75. Martyniuk, O. (2021). Financial reporting of micro and small enterprises (MSE) in transition economies of Central and East, Warszawa: PWE.
  • 76. Martyniuk, O., Majerowska, E. (2017). Społeczna odpowiedzialność polskich przedsiębiorstw rodzinnych - wyniki badań empirycznych [Corporate Social Responsibility of Polish Family Firms - Results of Empirical Studies]. Przedsiębiorczość i Zarządzanie, Iss. 18, No. 6, pp. 323-334.
  • 77. Martyniuk, T. (2013). The informative value of the financial result in the light of the usefulness of the financial statements. Space. Economy. Society, No. 4, Vol. II, pp. 99-112 (in Polish).
  • 78. Martyniuk, T. (2016). Funkcja informacyjna rachunkowości w outsourcingu usług finansowo-księgowych [The Informative Function of Accounting in Outsourcing of the Financial and Accounting Services]. Finanse, Rynki Finansowe, Ubezpieczenia, No. 2(80), pp. 151-157.
  • 79. Martyniuk, T., Cygańska, M., Żurawik, A., Malinowska, E. (2021). Rachunek kosztów w podmiotach leczniczych [Cost accounting in healthcare entities]. Gdansk: Gdansk University Pub.
  • 80. Mayer-Schonberger, V., Cukier, K. (2013). Big Data: A Revoltion that will Transform How we Live. London: Work and Think.
  • 81. Microsoft (2021). https://news.microsoft.com/pl-pl/features/microsoftspeaks-microsoft- bases-its-strategies-on-the-cloud, 30.05.2022.
  • 82. Microsoft (2022). Digital Future Index (DFG), https://m.facebook.com/Microsoft.Polska/ videos/digital-future-index/932401780975680/; https://news.microsoft.com/europe/features/digital-futures-index/?wt.mc_id=AID3034227_QSG_SCL_570956&ocid= AID3033655_FACEBOOK_oo_spl100003184252630, 22.06.2022.
  • 83. Mylonakis, J., Diacogiannis, G. (2010). Evaluating the likelihood of using linear discriminant analysis as a commercial bank card owners credit scoring model. International Business Research, Vol. 3, No. 2, p. 12.
  • 84. Nazari, M., Alidadi, M. (2013). Measuring credit risk of bank customers using artificial neural network. Journal of Management Research, Vol. 5, No. 2, p. 322.
  • 85. Nazmiye, U.P., Mehmet, B., Ethical Climate’s Mediating Role on the Relationship Between Emotional Intelligence and Job Satisfaction. Central European Management Journal, Vol. 30, No. 1, pp. 115-132.
  • 86. Negash, S. (2004). Business Intelligence. Communications of Association for Information Systems, Vol. 13, pp. 177-195.
  • 87. Nguen, T., Zhou, L., Spiegler, V.L.M. et al. (2018), Big data analytics in supply chain management: A state-of-the-art literature review. Computers and Operations Research, No. 98, pp. 254-264.
  • 88. Oet, M., Eiben, R., Bianco, T., Gramlich, D., Ong, S., Wang, J. (2011). SAFE: an early warning system for systemic banking risk. Proceedings of the 24th Australasian Finance and Banking Conference, SSRN.
  • 89. Olszak, C.M. (2012b). Analiza i ocena dorobku naukowego z zakresu Business Intelligence - wybrane zagadnienia [The Analysis and Evaluation of Scientific Achievements in Business Intelligence - Selected Issues]. Studia Ekonomiczne/Uniwersytet Ekonomiczny w Katowicach, No. 113, pp. 11-26.
  • 90. Olszak, C.M. (2007). Tworzenie i wykorzystanie systemów Business Intelligence na potrzeby nowoczesnej organizacji. Prace Naukowe. Akademia Ekonomiczna w Katowicach, p. 208.
  • 91. Olszak, C.M. (2012a). Organizacja oparta na Business Intelligence [The Business Intelligence-Based Organization]. Technologie informacyjne w transformacji współczesnej gospodarki, Studia Ekonomiczne/Uniwersytet Ekonomiczny, No. 100, pp. 9-29.
  • 92. Panetta, K. (2018). 5 Trends Emerge In the Gartner Hype Cycle for Emerging Technologies, Gartner, https://www.gartner.com/smarterwithgartner/5-trends-emerge-in- gartner-hype-cycle-for emerging-technologies-2018/, 17.06.2022.
  • 93. Pioch, J. (2011). Zarządzanie wartością przedsiębiorstwa narzędziem tworzenia przewagi konkurencyjnej spółek kapitałowych [Value Based Management as a Competitive Advantage Creating Tool for Limited Liability Companies]. Zeszyty Naukowe/Uniwersytet Ekonomiczny w Poznaniu, No. 170, pp. 208-217.
  • 94. Post-Lee, A., Pakath, R. (2014). Cloud Computing. In: S. Srinivasan, Security, Trust, and Regulatory Aspects of Cloud Computing in Business Environments (pp. 1-23). A Comprehensive Introduction Publisher: Idea Group Editors.
  • 95. Potvin, J.-Y., Soriano, P., Vall, M. (2004). Generating trading rules on the stock markets with genetic programming. Computers & Operations Research, Vol. 31, p. 1033.
  • 96. Provost, F., Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making, Big Data, No. 1, p. 53, http://online.liebertpub.com/doi/pdf/10.1089/ big.2013.1508/, 18.02.2022.
  • 97. Raiborn, C., Sivitanides, M. (2015). Accounting issues related to Bitcoins. Journal of Corporate Accounting & Finance, 26(2), pp. 25-34.
  • 98. Reisel, D. (2018). The Digitization in the World. From Edge to Core. IDC White Paper, p. 6, http://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate- dataage-whitepaper.pdf, 7.07.2022.
  • 99. Roy, A. (2021). In El Salvador, more people have bitcoin wallets than traditional bank accounts. Forbes, 7 October, https://www.forbes.com/sites/theapothecary/2021/10/07/, 20.06.2022.
  • 100. Saranya, K. (2019). 10 Examples of Improving Dashboards, https://www.boldbi.com/ blog/10-great-business-intelligence-dashboard-examples, 25.06.2022.
  • 101. Sauter, V.L. (2008). Decision Support Systems for Business Intelligence. New Jersey: Wiley.
  • 102. Schwaerzel, R. (2006). Financial Time Series Prediction and Evaluation by Genetic Programming with Trigonometric Functions and High-Order Statistics. Ph.D. Dissertation, The University of Texas at San Antonio. Advisor(s) Tom Bylander.
  • 103. Shouwei, L., Mingliang, W., Jianmin, H. (2013). Prediction of Banking Systemic Risk Based on Support Vector Machine. Mathematical Problems in Engineering, Vol. 2013, April 2013, p. 5.
  • 104. Śledziewska, K., Włoch, R. (2020). Gospodarka cyfrowa. Jak nowe technologie zmieniają świat [Digital economy. How new technologies are changing the world]. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego.
  • 105. Sobańska, I. (2013). Lean Accounting - genesis, principles, methods. In: Eadem, Lean Accounting: an integral element of lean management - lean accounting in management. Warsaw: Wolters Kluwer.
  • 106. Soszyńska-Budny, J. (2021). Safety Analysis of Critical Infrastructure. Cham: Springer.
  • 107. Staniec, I. (2003), Application of artificial neural networks and selected statistical methods to support credit decisions. Applications of statistical methods in scientific research II. Cracow: StatSoft Poland.
  • 108. Svangard, N., Nordin, P., Lloyd, S., Wihlborg, C. (2002). Evolving short-term trading strategies using genetic programming. Proc. of the Congress on Evolutionary Computation, Vol. 2, pp. 2006-2010.
  • 109. Szymczak, A., Gawrycka, M., Sobiechowska-Ziegert, A. (2012). The impact of technological and structural changes in the national economy on the labour-capital relations. Contemporary Economics, No. 6(1).
  • 110. Tabesh, P., Mousavidin, E., Hasani, S. (2019). Implementing big data strategies: A managerial perspective. Business Horizons, No. 62.
  • 111. Thomson Reuters IP Science (2022). Europe’s Most Innovative Universities Ranking, https://graphics.reuters.com/EUROPE-UNIVERSITY-INNOVATION/010091N02HR/ index.html, 10.07.2022.
  • 112. Willcocks, L., Whitley, E. (2009). Developing the information and knowledge agenda in information systems: insights from philosophy. The Information Society, Vol. 25, Iss. 3, pp. 190-197.
  • 113. Wolniak, R., Gajdzik, B. (2022). Influence of Industry 4.0 Projects on Business Operations: Literature and Empirical Pilot Studies Based on Case Studies in Poland. Journal Open Innovation: Technology, Market, and Complexity, 8(1), 44.
  • 114. Wolniak, R., Kwiatkowska, A., Gajdzik, B., Gębczyńska, M. (2022). Configurational Paths of Leadership Competency Shortages and 4.0 Leadership Effectiveness, An fs/QCA Study. Sustainability, 14(5), 2795.
  • 115. World Economic Forum (2018). The Future of Jops Report 2018. Geneva: Insight report, http://www3.weforum.org/docs/WEF_Future_of_Jobs_2018.pdf, 17.06.2022.
  • 116. Yobas, M.B., Crook, J.N., Ross, P.(2000). Credit scoring using neural and evolutionary techniques. IMA Journal of Mathematics Applied in Business and Industry, Vol. 11, p. 112.
  • 117. Zan, H. et al. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems, Vol. 37, p. 543.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a657dd2b-84bf-4aaf-9413-3a0e7076ed25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.