PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Paraseismic resistance evaluation for existing steel conveyor bridge subjected to mining tremors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the author’s approach to evaluating the dynamic resistance of existing building structures exposed to the action of paraseismic events. The idea of the approach was demonstrated in the example of an existing conveyor bridge, which is an important component of an industrial plant located in an area threatened by the occurrence of mining tremors. A scenario was analysed in which the object’s structure was not adapted to absorb additional dynamic effects. Therefore, it was necessary to determine the load-bearing capacity reserve within which the dynamic effects induced by a mining tremor could be allowed. As part of the analysis, criteria for selecting the authoritative section of the analysed object for further dynamic calculations were established and described in detail. As a result of the implemented evaluation procedure, the limiting values of the ground acceleration components were obtained, which are understood as the resistance of the analysed object in the context of carrying additional dynamic actions induced by a tremor. The determined resistance is included in the ultimate limit state STR framework, which sets the level of strength of particular structures’ components as a criterion. The limit values of the ground acceleration components were calibrated, taking into account other accompanying variable actions according to the Eurocodes guidelines. The study also justified using this approach and provides essential information about dynamic excitation’s most sensitive structural components. Such information can direct the process of retrofit or necessary strengthening of the structure when the evaluated resistance will exceed the intensity of existing or predicted seismic events in the area.
Rocznik
Strony
603--630
Opis fizyczny
Bibliogr. 52 poz., fot., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Engineering Surveying and Civil Engineering, AL. Mickiewicza 30, 30-059 Kraków, Poland
  • Building Research Institute, 1 Filtrowa Str., 00-611 Warszawa, Poland
  • AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Engineering Surveying and Civil Engineering, AL. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] P. Sopata, T. Stoch, A. Wójcik, D. Mrocheń, L and Surface Subsidence Due to Mining-Induced Tremors in the Upper Silesian Coal Basin (Poland) – Case Study. Remote Sens. 12, 23 (2020). DOI: https://doi.org/10.3390/rs12233923.
  • [2] K. Tajduś, A. Sroka, R. Misa, S. Hager, J. Rusek, M. Dudek, F. Wollnik, Analysis of Mining-Induced Delayed Surface Subsidence. Minerals 11, 11 (2021). DOI: https://doi.org/10.3390/min11111187.
  • [3] K. Tajduś, A. Tajduś, M. Cała, Seismicity and rock burst hazard assessment in fault zones: a case study. Arch. Min. Sci. 63, 747-765 (2018).
  • [4] F. Pachla, T. Tatara, Dynamic Resistance of Residential Masonry Building with Structural Irregularities, in Seismic Behaviour and Design of Irregular and Complex Civil Structures III. Springer, 335-347 (2020).
  • [5] F. Cui, Y. Li, X. Xu, X. Cheng, Numerical Prediction of the Bridge Subsidence Induced by Longwall Mining: A Case Study of the Majiagou Bridge. Geotech. Geol. Eng. 38, 3, 2685-2698 (2020). DOI: https://doi.org/10.1007/s10706-019-01178-4.
  • [6] S. Liu, J. Bai, G. Wang, X. Wang, B. Wu, A Method of Backfill Mining Crossing the Interchange Bridge and Application of a Ground Subsidence Prediction Model. Minerals 11, 9 (2021). DOI: https://doi.org/10.3390/min11090945.
  • [7] M. Marschalko, I. Yilmaz, M. Bednárik, K. Kubečka, Variations in the building site categories in the underground mining region of Doubrava (Czech Republic) for land use planning. Eng. Geol. 122, 3, 169-178 (2011). DOI: https://doi.org/10.1016/j.enggeo.2011.05.008.
  • [8] P. Boroń, J. M. Dulińska, D. Jasińska, Two-Step Finite Element Model Tuning Strategy of a Bridge Subjected to Mining-Triggered Tremors of Various Intensities Based on Experimental Modal Identification. Energies 14, 8, (2021). DOI: https://doi.org/10.3390/en14082062.
  • [9] E. Pilecka, K. Stec, J. Chodacki, Z. Pilecki, R. Szermer-Zaucha, K. Krawiec, The Impact of High-Energy MiningInduced Tremor in a Fault Zone on Damage to Buildings. Energies 14, 14 (2021). DOI: https://doi.org/10.3390/en14144112.
  • [10] J. Rusek, L. Słowik, K. Firek, M. Pitas, Determining the Dynamic Resistance of Existing Steel Industrial Hall Structures for Areas with Different Seismic Activity. Archives of Civil Engineering 66, 4, 525-542 (2020). DOI: https://doi.org/10.24425/ace.2020.135235.
  • [11] D. Mrozek, M. Mrozek, The Specificity of Dynamic Resistance of Existing Bridge Structures in Mining Areas. Int. J. Civ. Eng. 19, 4, 463-480 (2021). DOI: https://doi.org/10.1007/s40999-020-00571-y.
  • [12] CEN EN EN 1990. Eurocode – Basis of structural design. 2002.
  • [13] A. Cholewicki, M. Kawulok, Z. Lipski, J. Szulc, Rules for determining the load and checking limit states of buildings located on mining areas in reference to the Eurocodes. Building Research Institute, Warsaw, 2012.
  • [14] Instruction 364. Technical requirements for buildings erected in mining areas. ITB. Building Research Institute, 2007.
  • [15] Instruction 391. Design of buildings subject to the influence of mining tremors. Building Research Institute, 2003.
  • [16] J. Dubiński, G. Mutke, J. Chodacki, Distribution of peak ground vibration caused by mining induced seismic events in the Upper Silesian Coal Basin in Poland. Arch. Min. Sci. 65, 3 (2020).
  • [17] E. Pilecka, K. Stec, J. Chodacki, Z. Pilecki, R. Szermer-Zaucha, K. Krawiec, The Impact of High-Energy MiningInduced Tremor in a Fault Zone on Damage to Buildings. Energies 14, 14 (2021). DOI: https://doi.org/10.3390/en14144112.
  • [18] G.R. Foulger, M.P. Wilson, J.G. Gluyas, B.R. Julian, R.J. Davies, Global review of human-induced earthquakes. Earth-Science Rev. 178, 438-514 (2018). DOI: https://doi.org/10.1016/j.earscirev.2017.07.008.
  • [19] M. Tandon, Historical Development and Present Status of Earthquake Resistant Design of Bridges, in Advances in Indian Earthquake Engineering and Seismology: Contributions in Honour of Jai Krishna, M.L. Sharma, M. Shrikhande, and H.R. Wason, Eds. Cham: Springer International Publishing, 231-242 (2018).
  • [20] L. Jiang, Y. Zhang, Y. Feng, W. Zhou, Z. Tan, Simplified calculation modelling method of multi-span bridges on high-speed railways under earthquake condition. Bull. Earthq. Eng. 18, 5, 2303-2328 (2020). DOI: https://doi.org/10.1007/s10518-019-00779-x.
  • [21] M.L.B. Marsh Ian G., Kavazanjian Jr., Edward, LRFD Seismic Analysis and Design of Bridges: Reference Manual.
  • [22] F. Vicencio, N.A. Alexander, Dynamic Structure-Soil-Structure Interaction in unsymmetrical plan buildings due to seismic excitation. Soil Dyn. Earthq. Eng. 127, 105817 (2019). DOI: https://doi.org/10.1016/j.soildyn.2019.105817.
  • [23] D. Zou, K. Chen, X. Kong, X. Yu, An approach integrating BIM, octree and FEM-SBFEM for highly efficient modelling and seismic damage analysis of building structures. Eng. Anal. Bound. Elem. 104, 332-346 (2019). DOI: https://doi.org/10.1016/j.enganabound.2019.03.038.
  • [24] M. D’Amato, R. Sulla, Investigations of masonry churches seismic performance with numerical models: application to a case study. Arch. Civ. Mech. Eng. 21, 4, 161 (2021). DOI: https://doi.org/10.1007/s43452-021-00312-5.
  • [25] M. Rizwan, N. Ahmad, A. Naeem Khan, S. Qazi, J. Akbar, M. Fahad, Shake table investigations on code noncompliant reinforced concrete frames. Alexandria Eng. J. 59, 1, 349-367 (2020). DOI: https://doi.org/10.1016/j.aej.2019.12.047.
  • [26] C. Yenidogan, R. Nishi, S. Uwadan, T. Nagae, H. Isoda, T. Tsuchimoto, T. Inoue, K. Kajiwara, Full-scale shake table tests of P&B type of Japanese three-story wood dwellings for the collapse characterization. Soil Dyn. Earthq. Eng. 150, 106898 (2021). DOI: https://doi.org/10.1016/j.soildyn.2021.106898.
  • [27] C. Li, K. Bi, H. Hao, Seismic performances of precast segmental column under bidirectional earthquake motions: Shake table test and numerical evaluation. Eng. Struct. 187, 314-328 (2019). DOI: https://doi.org/10.1016/j.engstruct.2019.03.001.
  • [28] L. Jiang, X. Zhang, J. Ye, L. Jiang, L. Zhou, Seismic behaviour and damage assessment of mid-rise cold-formed steel-framed buildings with normal and reinforced beam-column joints. Arch. Civ. Mech. Eng. 21, 3, 125 (2021). DOI: https://doi.org/10.1007/s43452-021-00278-4.
  • [29] M. Polese, M. Gaetani d’Aragona, A. Prota, Simplified approach for building inventory and seismic damage assessment at the territorial scale: An application for a town in southern Italy, Soil Dyn. Earthq. Eng. 121, 405-420 (2019). DOI: https://doi.org/10.1016/j.soildyn.2019.03.028.
  • [30] J. Rusek, K. Tajduś, K. Firek, A. Jędrzejczyk, Score-based Bayesian belief network structure learning in damage risk modelling of mining areas building development. J. Clean. Prod. 296, 126528 (May 2021). DOI: https://doi.org/10.1016/j.jclepro.2021.126528.
  • [31] M. Aghababaei, M. Mahsuli, Component damage models for detailed seismic risk analysis using structural reliability methods. Struct. Saf. 76, 108-122 (2019). DOI: https://doi.org/10.1016/j.strusafe.2018.08.004.
  • [32] A.N. Papadopoulos, P. Bazzurro, W. Marzocchi, Exploring probabilistic seismic risk assessment accounting for seismicity clustering and damage accumulation: Part I. Hazard analysis, Earthq. Spectra, 37, 2, 803-826 (2021). DOI: https://doi.org/10.1177/8755293020957338.
  • [33] A.N. Papadopoulos, P. Bazzurro, Exploring probabilistic seismic risk assessment accounting for seismicity clustering and damage accumulation: Part II. Risk analysis, Earthq. Spectra 37, 1, 386-408 (2021). DOI: https://doi.org/10.1177/8755293020938816.
  • [34] D. Mrozek, M. Mrozek, The Specificity of Dynamic Resistance of Existing Bridge Structures in Mining Areas. Int. J. Civ. Eng. 19, 4, 463-480 (2021). DOI: https://doi.org/10.1007/s40999-020-00571-y.
  • [35] J. Rusek, The Point Nuisance Method as a Decision-Support System Based on Bayesian Inference Approach. Arch. Min. Sci. 65, 1, 117-127 (2020). DOI: https://doi.org/10.24425/ams.2020.132710.
  • [36] Seismic Evaluation and Retrofit of Existing Buildings, ASCE/SEI 4. American Society of Civil Engineers, 2014.
  • [37] Seismic Evaluation of Existing Buildings, ASCE/SEI 3. American Society of Civil Engineers, 2003.
  • [38] FEMA P749, “Earthquake-resistant design concepts,” Fema, 2010.
  • [39] CEN EN 1998-1. Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings. 2004.
  • [40] S. Sattar, A. Hulsey, G. Hagen, F. Naeim, S. McCabe, Implementing the performance-based seismic design for new reinforced concrete structures: Comparison among ASCE/SEI 41, TBI, and LATBSDC. Earthq. Spectra, (2021). DOI: https://doi.org/10.1177/8755293020981968.
  • [41] Pacific Earthquake Engineering Center, Guidelines for Performance-Based Seismic Design of Tall Buildings. PEER Rep. 2017/06, 2017.
  • [42] M. Dudek, K. Tajduś, FEM for prediction of surface deformations induced by flooding of steeply inclined mining seams. Geomech. Energy Environ. 28, 100254 (2021). DOI: https://doi.org/10.1016/j.gete.2021.100254.
  • [43] S. Samsonov, N. D’Oreye, B. Smets, Ground deformation associated with post-mining activity at the FrenchGerman border revealed by novel InSAR time series method. Int. J. Appl. Earth Obs. Geoinf. 23, 142-154 (2013). DOI: https://doi.org/10.1016/j.jag.2012.12.008.
  • [44] M. Marschalko, I. Yilmaz, M. Bednárik, K. Kubečka, Variations in the building site categories in the underground mining region of Doubrava (Czech Republic) for land use planning. Eng. Geol. 122, 3, 169-178 (2011). DOI: https://doi.org/10.1016/j.enggeo.2011.05.008.
  • [45] CEN EN 1991-1-1. Eurocode 1: Actions on structures – Part 1-1: General actions – Densities, self-weight, imposed loads for buildings. 2002.
  • [46] J. Rusek, A proposal for an assessment method of the dynamic resistance of concrete slab viaducts subjected to impact loads caused by mining tremors. Czas. Inżynierii Lądowej, Środowiska i Arch., (2017). DOI: https://doi.org/10.7862/rb.2017.43.
  • [47] J. Rusek, Procedure of building and analysis of information database on mining tremors of existing bridge structures. Geomatics Environ. Eng. (2018). DOI: https://doi.org/10.7494/geom.2017.11.4.111.
  • [48] CEN EN 1993-1: Eurocode 3: Design of steel structures. 1, 2006.
  • [49] A.K. Chopra, Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice Hall, 2017.
  • [50] CEN EN 1991-1-3. Eurocode 1: Actions on structures – Part 1-3: General actions – Snow loads. 2003.
  • [51] CEN EN EN 1991-1-5. Eurocode 1: Actions on structures – Part 1-5: General actions – Thermal actions. 2005.
  • [52] CEN EN 1991-1-4. Eurocode 1: Actions on structures – Part 1-4: General actions – Wind loads. 2005.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6547023-0a43-4a2f-a9bd-0900048e6a83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.