PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grindability characterization and work index determination of alluvial ferro-columbite deposits for efficient mineral processing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study emphasizes on the physicochemical and grindability characteristics and work index of an alluvial formed silica dominated ferro-columbite mineral from Rayfield-Jos minefields in Plateau state, Nigeria. Investigations were also carried out in order to determine the mineralogy of the mineral deposits and most essentially the actual energy consumed during comminution and milling of the mineral so as to achieve the liberation size prior to high efficient mineral processing or beneficiation and the extraction of value metals. The distribution of the mineral particles as well as their sizes was determined, with a mineral liberation size fraction range essentially established as -150+90 μm particle sizes. Mass percentage of each size fraction obtained from PSD analysis conducted before and after comminution was also determined, obtaining 80% passing for both the mineral feeds and comminuted products. Berry and Bruce modified Bond’s work index was therefore obtained, and was determined to be within the range of 2.0414 to 2.5667 kWh/ton. Hence, the energy consumed or required to comminute or grind the Fe-columbite mineral to 80% passing is expected to fall within the range of 0.3613 to 0.4543 kWh. Thus, it could be said that a low milling work index as well as moderately low energy is required for comminution and this can be attributed to the mineralogy, mineral source and alluvial formation of the mineral reserve. Therefore, the grindability/PSD result of the mineral sample indicates that its mineralogy is considered a class of moderately soft mineral type in terms of texture with easy grindability.
Słowa kluczowe
Rocznik
Strony
art. no. 170297
Opis fizyczny
Bibliogr. 51 poz., fot., rys., tab., wykr.
Twórcy
  • Chemical, Metallurgical & Materials Engineering Dept, Tshwane University of Technology, Pretoria, Private Bag X680, Pretoria West 0183, Republic of South Africa
  • Chemical, Metallurgical & Materials Engineering Dept, Tshwane University of Technology, Pretoria, Private Bag X680, Pretoria West 0183, Republic of South Africa
  • Materials Science & Engineering Dept, Obafemi Awolowo University, Ile-Ife 220002, Nigeria
  • Chemical, Metallurgical & Materials Engineering Dept, Tshwane University of Technology, Pretoria, Private Bag X680, Pretoria West 0183, Republic of South Africa
Bibliografia
  • ABRAHAM, J. B., ANDREY, V. K., JOSEPH, K. B. , PÄR, J. G. (2012), Characterization of Chemical Composition and Microstructure of Natural Iron Ore from Muko Deposits, ISRN Materials Science. 2012:9. DOI: 10.5402/2012/174803.
  • ADEOTI, M. O., DAHUNSI, O. A., AWOPETU, O. O., ARAMIDE, F. O., ALABI, O. O., JOHNSON, O. T. , ADULKAREEM, A. S. (2019), Determination of work Index of graphite from Saman-Burkono (Nigeria) using modified Bond’s method, Nigerian Journal of Technology, Vol. 38, No. 3, pp. 609-613.
  • ADETULA, Y. V., OZAH, B., ALABI, O. O., AJAYI, J. A. , AKOJA, A. (2019), Determination of Work Index for Iperindo Lode Gold Deposit at Ilesha Goldfield Osun State, Nigeria Using Modified Bond Index, American Journal of Materials Synthesis and Processing, Vol. 4, No. 1, pp. 37-42.
  • ADETUNJI, A. R., SIYANBOLA, W. O., FUNTUA, I. I., OLUSUNLE, S. O. O., AFONJA, A. A. , ADEWOYE, O. O. (2005), Assessment of beneficiation routes of tantalite ores from key locations in Nigeria, Journal of Minerals and Materials Characterization and Engineering, Vol. 4, No. 2, pp. 85-93.
  • ALABI, O. O, YARO, S. A., DUNGKA, G. T., ASUKE, F. , DAUDA, E. T. (2015), Determination of Work Index of Gyel-Bukuru Columbite Ore in Plateau State, Nigeria, Journal of Minerals and Materials Characterization and Engineering, Vol. 3, pp. 194-203.
  • ALABI, O. O., YARO, S. A., DUNGKA, G. T., ASUKE, F. , HASSAN, B. (2016), Comparative beneficiation study gyel columbite ore using double stage (magnetic-to-magnetic and magnetic-to-gravity) separation techniques, Journal of Minerals and Materials Characterization and Engineering 4, pp. 181-193.
  • ALABI, O. O. AND AWOGBAMILA, O. W. (2020), Determination of grindability characteristics of Duguri (Nigeria) galena towards effective beneficiation process, Science and Technology, 6(22), pp. 83-92.
  • ALABI, O. O., SHEHU Y. A. , BINTA, H. (2012), Determination of Bond Index of Wasagu Manganese Ore in Kebbi State, Nigeria, International Journal of Scientific and Engineering Research, Vol. 3, No. 10, pp 1-8.
  • AYENI, F. A., ALABI, O. O., OLA, S. O. (1999), Beneficiation of Tailings, Proceedings of the 16th Nigerian Metallurgical Society Annual Conference, Abuja, 3-5 November 1999, pp. 67-75.
  • AYENI, F. A., IBITOYE, S. A., ADELEKE, A. A. (2012a), Development of a wet magnetic-gravity processing route to recover columbite from Jos minefield tailings dump, Nigeria, Journal of Mining and Metallurgy, Vol. 48 A (1), pp. 63-72.
  • AYENI, F. A., MADUGU, I. A., SUKOP, P., IBITOYE, S. A., ADELEKE, A. A. , ABDULWAHAB, M. (2012b), Secondary Recovery of Columbite from Tailing Dump in Nigerian Jos Mines Field, Journal of Minerals and Materials Characterization and Engineering, Vol. 11, pp. 587-595.
  • BERRY, T. F. , BRUCE, R. W. (1966), A Simple Method of Determining the Grindability of Ores, Canadian Mining Journal, Vol.8, No. 7, pp 63-65.
  • BWALA, D. M., ABDULFATTAH, F., ALABI, O. O. , ADEWUYI, B. O. (2021), Determination of work index of Filin Kokowa gold deposit in Toro Local Government, Bauchi State Nigeria, Nigerian Journal of Technology, Vol. 40, No. 3, pp. 387-392.
  • COOK, N. J. (2000), Mineral characterization of industrial mineral deposits at the geological survey of Norway: a short introduction, NGU-BULL 436, pp. 189-192.
  • DENIZ, V. (2003). Relationships between bond’s grindability (gbg) and breakage parameters of grinding kinetic on limestone, In Proceedings of 18th International Mining Congress and Exhibition of Turkey-IMCET, pp. 451-456.
  • DOLL, A. , BARRATT, D. (2011), “Grinding: Why so many tests?”, In 43rd Annual Meeting of the, Canadian Mineral Processors, Ottawa, Ontario, Canada.
  • GBADAMOSI, Y. E., ALABI, O. O. , BORODE, J. O. (2021), Evaluating the potentials of liberation size determination in Anka (Zamfara state, Nigeria) manganese ore and its comminution tendency using bond index technique, Journal of Materials Science Research and Reviews, Vol. 8(1), pp. 7-18.
  • DEBLONDE, G. J. P., WEIGEL, V., BELLIER, Q., HOUDARD, R., DELVALLÉE, F., BÉLAIR, S. , BELTRAMI, D. (2016), Selective recovery of niobium and tantalum from low-grade concentrates using a simple and fluoride-free process, Separation and Purification Technology, 162, pp. 180-187.
  • GUPTA, A. , YAN, D. (2006), Mineral Processing Design and Operation- An Introduction, Amsterdam: Elsevier.
  • EVERISTUS, N. (2010), Niobium Ore Mining and Processing in Nigeria: The Opportunities, Nigeria Business Place, Abuja. pp. 1-3.
  • HABINSHUTI, J. B., MUNGANYINKA, J. P., ADETUNJI, A. R., MISHRA, B., OFORI-SARPONG, G., KOMADJA, G. C., TANVAR, H., MUKIZA, J. , ONWUALU, A. P. (2021), Mineralogical and physical studies of low-grade tantalum-tin ores from selected areas of Rwanda, Results in Engineering, Vol. 11, pp. 1-11.
  • HIGGINS, M. (1998), Jksimblast – Blast Simulation and Management, Presented At Blasting Analysis International Eighth HighTech Seminar, Nashville, Tennessee, pp. 1-9.
  • KIMMEL, J. L , KITCHELL, R. W. (2003), Oxygen reduced niobium oxides, United States Patent, US6576099B2, pp. 1-30.
  • LEVIN, J. (1992), Indicators of grindability and grinding efficiency, Journal of South Africa Institute Minerals and Metallurgy, Vol. 92, No. 10, pp. 283-290.
  • LIU, M., YOU, Z., PENG, Z., LI, X. , LI, G. (2016), Enrichment of rare earth and niobium from a REE-Nb-Fe associated ore via reductive roasting followed by magnetic separation, The Minerals, Metals & Materials Society, pp. 1-10.
  • LVOV, V. V. , CHITALOV, L. S. (2019), Comparison of the different ways of the ball bond work index determining, International Journal of Mechanical Engineering and Technology, Vol. 10(3), pp. 1180-1194.
  • LYNCH, A. J. (2015), Comminution handbook, Carton, Victoria, Australia Institute of Mining and Metallurgy, Vol. 6: pp. 43-49.
  • MAGDALIMOVIC, N. M. (1989), Calculation for Energy required for grinding in ball mill, International Journal of Mineral Processing, Vol 25, No. 2, pp 41-43.
  • MINDAT. (2021), Rayfield, Jos south, Plateau state, Nigeria, [Online], Available from: https://www.mindat.org/feature-2324561.html. [Accessed on: 25th August, 2021].
  • NAPIER-MUNN, T. J., MORELL, S., MORRISON, R. D , KOJOVIC, T. (1996), Mineral comminution Cirtcuit, their operation and optimizatio”, JKMRC Monograph Series in Mining and Mineral Processing 2, University of Queensland Australia. 2, 143-154.
  • NETE, M. (2009), Dissolution and analytical characterization of tantalite ore, niobium metal and other niobium compounds, [Published Dissertation]. University of the Free State, Bloemfontein, pp. 1-22.
  • NETE, M., PURCELL, W., SNYDERS, E., NEL, J. T. , BEUKES, G. (2012), Characterization and alternative dissolution of tantalite mineral samples from Mozambique, The Journal of the Southern African Institute of Mining and Metallurgy, Vol. 112, pp. 1079-1086.
  • NNAEMEKA S. NZEH, PATRICIA POPOOLA, SAMSON ADEOSUN, ABRAHAM ADELEKE. (2023a). Characterization of Rayfield-Jos Columbite Deposit for Efficient Beneficiation and Recovery of Niobium and Tantalum. The Minerals, Metals & Materials Society 2023: Characterization of Minerals, Metals & Materials 2023, The Minerals, Metals & Materials Series. pp. 191-206. https://doi.org/10.1007/978-3-031-22576-5_18.
  • NNAEMEKA STANISLAUS NZEH, MAITE MOKGALAKA, NTHABISENG MAILA, PATRICIA POPOOLA, DANIEL OKANIGBE, ABRAHAM ADELEKE , SAMSON ADEOSUN. (2023b). Pyrometallurgical approach in the recovery of Niobium and Tantalum. Pyrometallurgy – New Perspectives, Intechopen, pp. 1-23.
  • NORAZIAH, C., AB. AZIZ, A. , GRATIM, H. (2016), An Ambient Agent Model for Analyzing Managers’ Performance During Stress, In: 2016 International Conference on Applied Science and Technology (ICAST 2016), Kedah, Malaysia, 11-13.
  • NZEH, N. S., ADEOSUN, S., POPOOLA, A. P., ADELEKE, A. , OKANIGBE, D. (2022a), Process applications and challenges in mineral beneficiation and recovery of niobium from ore deposits–A review, Mineral Processing and Extractive Metallurgy Review, Vol. 43, No. 7, pp. 833-864.
  • NZEH, N. S., POPOOLA, A. P. I., ADELEKE, A. A. , ADEOSUN, S. O. (2022b), Factors and challenges in the recovery of niobium and tantalum from mineral deposits, recommendations for future development–A review, Materials Today: Proceedings, Elsevier, Vol. 65, pp. 2184-2191.
  • NZEH, N. S., POPOOLA, A. P. I., OKANIGBE, D., ADEOSUN, S. O., ADELEKE, A. A. 2023c. Work index evaluation of Rayfield-Jos columbite mineral for effective processing and recovery of niobium and tantalum. Materials Today: Proceedings, Elsevier, pp. 1-8. DOI: https://doi.org/10.1016/j.matpr.2023.08.059.
  • OGBONNA, A. I., NWAKAUDU, S. M. , ONYEMOBI, O. O. (1999), Strategic Mineral Deposits in Nigeria (The Neglected Case of Niobotantalites), Proceedings of 16th Nigerian Metallurgical Society Annual Conference, Abuja, October 1999. pp. 67-75.
  • ONEMINE (2010), Summary and determination of Bond Work Index using an Ordinary Laboratory Batel Ball Mill, http://www.onemine.org/serch//summary.emf. On 14/04/2021.
  • RIANTIE, A., WAHYUNI, N., NORA, I. (2013), PemiscihTimbal (Pb) Dalam Galena Dengan Metode Flotasi Manggunakan Deterjen, Positron, 3(1):01 -05.
  • RYAN. (2018), Facts about niobium: Production, properties, applications, and availability, ADMAT Refractory Metals, [Online], Available from: https://www.admatinc.com/facts-about-niobium-production-properties-applications-and-availability. [Accessed on: 27th June, 2020].
  • SIDDALL, B., HENDERSON, G. , PUTLAND, B. (1996), Factors Influencing Sizing Of SAG Mills From Drill Core Samples, Proc. Conf. International AG And SAG Grinding Technology, UBC, Vancouver, Canada, Vol. 2, pp. 463.
  • THOMAS, D., ASUKE, F. , YARO, S. (2014), Determination of Some Conceptual Mineral Processing Parameters of Soba-Wanka Pyrochlore-Col Tan Mineral Ore Deposit, in Nigeria Engineering Conference, pp. 32-41.
  • TODOROVIC, D., TRUMIC, M., ANDRIC, L., MILOSEVIC, V. , TRUMIC, M. (2017), A quick method for bond work index approximate value determination, Physicochemical Problems of Mineral Processing, Vol. 53(1), pp. 321-332.
  • WHITTLES, D. N., KINGMAN, S. W. , REDDISH, D. J. (2003), Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage, International Journal of Mineral Processing, Vol. 68, pp 71-91.
  • WILLS, B. A. , FINCH J. (2015), Will’s Mineral Processing Technology, 8th Edition, Butterworth-Heinemann, 8,. 212-234.
  • WILLS, B. A. , NAPIER-MUNN, T. J. (2006), Will’s mineral processing technology - An introduction to the practical aspects of ore treatment and mineral recovery, Elsevier Science and Technology Books, 7th Edition.
  • YARO S. A. (1996), “Grindability Test For Ririwai Lead-Zinc Complex Ore”, Journal of Nigeria Mining.
  • YERIMA, M. L. , ABDULRAHMAN, A. S. (2015), Physiochemical Analysis of Chanchaga Ore, North Central Nigeria, Journal of Applied Sciences 15 (7), pp. 1020-1025.
  • ZHANG, Y., DU, M., LIU, B., SU, Z., LI, G. , JIANG, T. (2017), Separation and recovery of iron and manganese from high-iron manganese oxide ores by reduction roasting and magnetic separation technique, Separation Science and Technology, Vol. 52, No. 7, pp. 1321-1332.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6536274-02e8-493d-bde8-cbd86f9a11af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.