PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical modelling of heat transport in a section of human forearm

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents numerical analysis of heat transfer in the human forearm and influence of its internal structure on the temperature distribution inside. For this purpose three geometrical models of a human forearm were developed: model containing continuous muscle tissue only, model in which muscle tissue and bones were considered and model which contained muscle tissue bones and main blood vessels. In those models heat transfer in the muscle tissues and bones were described by Pennes bioheat equation, while for blood flowing through main vessels (artery and vein) full set of governing equations were solved. Moreover, simplified one-dimensional description of skin was developed in order to reduce model complexity. Results obtained with all models were confronted against each other to reveal influence of the main blood vessels on the temperature distribution in a forearm.
Rocznik
Strony
347--363
Opis fizyczny
Bibliogr. 31 poz., il., tab.
Twórcy
  • Institute of Thermal Technology Silesian University of Technology Konarskiego 22, 44-100 Gliwice, Poland
autor
  • Institute of Thermal Technology Silesian University of Technology Konarskiego 22, 44-100 Gliwice, Poland
Bibliografia
  • [1] Anatomy and physiology – cool-blooded animals (poikilotherms). The Columbia Electronic Encyclopedia, 6th ed., Columbia University Press available on the internet: http://www.infoplease.com/encyclopedia/science/bodytemperature-cold-blooded-animals-poikilotherms.html [accessed on 07.02.2016].
  • [2] Medical dictionary – warm-blooded. The Free Dictionary by Farlex. Available on the internet: http://medicaldictionary.thefreedictionary.com/Warm+blooded [accessed on 07.02.2016].
  • [3] Handbook of basic clinical procedures [in Polish: Podręcznik podstawowych zabiegów klinicznych]. Available on the internet: http://edu.pam.szczecin.pl/∼marcinm/INIEKCJE.html [accessed on 15.12.2015].
  • [4] The Visible Human Project, U.S. National Library of Medicine, 2003. Available on the internet: https://www.nlm.nih.gov/research/visible/visible human.html [accessed on 18.12.2015].
  • [5] J. Łaszczyk, A. Maczko, W. Walas, A.J. Nowak. Inverse thermal analysis of the neonatal brain cooling process. International Journal of Numerical Methods for Heat & Fluid Flow, 24(4): 946–968, 2014.
  • [6] T.L. Bergman, A.S. Lavine, F.P. Incorpera, D.P. DeWitt. Fundamentals of heat and mass transfer. John Wiley & Sons, 6th ed., 2008.
  • [7] M.M. Chen, K.R. Holmes. Microvascular contributions in tissue heat transfer. Annals of the New York Academy of Sciences, 335: 137–150, 1980.
  • [8] M. Ciesielski, B. Mochnacki. Application of the control volume method using the Voronoi polygons for numerical modeling of bio-heat transfer processes. Journal of Theoretical and Applied Mechanics, 52(4): 927–935, 2014.
  • [9] M. Duda, B. Mochnacki. 3D model of thermal interactions between human forearm and environment. Journal of Applied Mathematics and Computational Mechanics, 14(3): 17–23, 2015.
  • [10] K.C. Gokul, D.B. Gurung, P.R. Adhikary, Effect of blood perfusion and metabolism in temperature distribution in human eye. Advances in Applied Mathematical Biosciences, 4(1): 13–23, 2013.
  • [11] L.M. Jiji. Heat Conduction, pp. 302–304, Springer, Berlin, 2009.
  • [12] H.G. Klinger, Heat transfer in perfused biological tissue. I. General theory. Bulletin of Mathematical Biology, 36(4): 403–415, 1974.
  • [13] A. Kucaba-Piętal. Blood as complex fluid, flow of suspensions. [In:] Blood Flow Modelling and Diagnostics. Advanced Course and Workshop – BF 2005, Warsaw, June 20–23, 2005, T.A. Kowalewski [Ed.], pp. 9–30, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 2005.
  • [14] A. Kotte, G. van Leeuwen, J. de Bree, J. van der Koijk, H. Crezee, J. Lagendijk. A description of discrete vessel segments in thermal modelling of tissues. Physics in Medicine and Biology, 41(5): 865, 1996, http://stacks.iop.org/0031-9155/41/i=5/a=004.
  • [15] M. Krause, Thermoregulation of the human body and thermal load [in Polish: Termoregulacja organizmu człowieka i obciążenie termiczne]. Centralny Instytut Ochrony Pracy, Wrocław, 2004.
  • [16] E. Majchrzak, B. Mochnacki, M. Jasiński, Numerical modelling of bioheat transfer in multi-layer skin tissue domain subjected to a flash fire. Computational Fluid and Solid Mechanics, 1–2: 1766–1777, 2003.
  • [17] M. Misterski. Evaluation of selected methods of radial artery extraction in direct myocardial revascularization [in Polish: Ocena wybranych sposobów pobierania tętnicy promieniowej w operacjach bezpośredniej rewaskularyzacji mięśnia sercowego]. Poznań, 2008, available on the internet: http://www.wbc.poznan.pl/dlibra/plaincontent?id=92412 [accessed on 15.12.2015].
  • [18] A. Narasimhan. The role of porous medium modeling in biothermofluids. Journal of the Indian Institute of Science, 91: 343–366, 2011.
  • [19] H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1(2): 93–122, 1948.
  • [20] D. Quemada, Blood rheology and its implication in flow of blood. Laboratoire de Biorheologie et Universite Paris VII, pp. 3–9, 1983.
  • [21] M. Stańczyk. Vascular model of heat transfer in perfused tissue. [In:] Blood Flow Modelling and Diagnostics. Advanced Course and Workshop – BF 2005, Warsaw, June 20–23, 2005, T.A. Kowalewski [Ed.], pp. 451–487, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 2005.
  • [22] M. Stańczyk, G.M.J. Van Leeuwen, A.A. Van Steenhoven, Discrete vessel heat transfer in perfused tissue – model comparison. Physics in Medicine and Biology, 52(9): 2379, 2007.
  • [23] M. Stańczyk, J.J. Telega. Modelling of heat transfer in biomechanics – a review. Part I. Soft tissues. Acta of Bioengineering and Biomechanics, 4(1): 31–61, 2002.
  • [24] D.A. Torvi, J.D. Dale. A finite element model of skin subjected to a flash fire. ASME Journal of Biomechanical Engineering, 116(3): 250–255, 1994.
  • [25] R. Trobec, M. Depolli, Simulated temperature distribution of the proximal forearm. Computers in Biology and Medicine, 41(10): 971–979, 2011.
  • [26] J.W. Valvano, Bioheat Transfer, The University of Texas at Austin, pp. 19–23, Austin, USA.
  • [27] S. Weinbaum, L.M. Jiji. A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. ASME Journal of Biomechanical Engineering, 107: 131–139, 1985.
  • [28] S. Weinbaum, L.M. Jiji, D.E. Lemons, Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer. Part I. Anatomical foundation and model conceptualization. ASME Journal of Biomechanical Engineering, 106: 321–330, 1984.
  • [29] F.M. White, Fluid Mechanics, 6th ed., pp. 338–342, McGraw-Hill, 2006.
  • [30] W. Wulff, The energy conservation equation for living tissues. IEEE Transactions-Biomedical Engineering, 21(6): 494–495, 1974.
  • [31] A. Zolfaghari, M. Maerefat, Bioheat Transfer, pp. 155–156, InTech, http://cdn.intechweb.org/pdfs/19889.pdf, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a64bc40e-709e-48af-bc0e-acf82b91931f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.