PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anatomical and functional assessment of patency of the upper respiratory tract in selected respiratory disorders - Part 2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents selected physical diagnostic methods used in otorhinolaryngology and results of their application. In addition to the applications of methods using the capabilities of selective sensors, selected methods of hybrid diagnostics were also presented - for assessment of parameters of respiratory processes, with polysomnography as an example of using both typical diagnostic methods dedicated to otolaryngology, as well as standard EEG and ECG methods. It has been shown that in some special cases of respiratory disorders, measurements of the air flow in the respiratory tract can be supplemented with pressure measurements in selected positions within the airways. The presented optical methods and diagnostic systems are very often used in the diagnosis of diseases not specific for otolaryngology occurring in the area of the head and neck. The presented material is the second part of the study discussing both standard and widely used diagnostic methods. All presented methods are dedicated to otolaryngology. This text is a continuation of the material published in No 4 of 2021 [1].
Rocznik
Strony
429--454
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
  • Military University of Technology, Warsaw, Institute of Optoelectronics, Kaliskiego St., 2, 00-908, Warsaw, Poland
  • University of Warmia and Mazury, Olsztyn, Department and Clinic of Otorhinolaryngology, Head and Neck Diseases, Collegium Medicum, Warszawska St. 30, 10-082 Olsztyn, Poland
  • AGH University of Science and Technology in Kraków, Department of Mechanics and Vibroacoustics, Mickiewicza St. 30, 30-059 Kraków, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Mechatronics, Faculty of Technical Science, Oczapowskiego St. 2, Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Neurosurgery, School of Medicine, Oczapowskiego St. 2, Olsztyn, Poland
  • Clinic of Otorhinolaryngology, Head and Neck Surgery, University Hospital in Olsztyn, Warszawska St. 30, 10-082 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department and Clinic of Otorhinolaryngology, Head and Neck Diseases, Collegium Medicum, Warszawska St. 30, 10-082 Olsztyn, Poland
autor
  • LABSOFT Sp. z o.o., Puławska St. 469, 02-844 Warsaw, Poland
Bibliografia
  • [1] Kukwa, A., Zając, A., Barański, R., Nitkiewicz, S., Kukwa, W., Zomkowska E., & Rybak, A. (2021). Anatomical and functional assessment of patency of the upper respiratory tract in selected respiratory disorders - Part 1. Metrology and Measurement Systems, 28(4), 813-836. https://doi.org/10.24425/mms.2021.138538
  • [2] Stöppler, M. C. (2018). CT Scan (CAT Scan, Computerized Tomography) Imaging Procedure. MedicineNet. https://www.medicinenet.com/cat_scan/article.htm
  • [3] Nałęcz, M., Torbicz, W., Zawick, I., Chmielewski, L., Kulikowski, J., Nowakowski, A., Cudny, W., Kozińska, D., & Chmielewski, L. (2003). Biocybernetyka i Inżynieria Biomedyczna 2000 Tom 8 - Obrazowanie Medyczne. Akademicka Oficyna. Wydawnicza EXIT, Warsaw.
  • [4] Wachulak, P. W., Marconi, M. C., Bartels, R. A., Menoni, C. S., & Rocca, J. J. (2008). Soft x-ray laser holography with wavelength resolution. JOSA B, 25(11), 1811-1814. https://doi.org/10.1364/JOSAB.25.001811
  • [5] Mahmood, F., Chen, R., & Durr, N. J. (2018). Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Transactions on Medical Imaging, 37(12), 2572-2581. https://doi.org/10.1109/TMI.2018.2842767
  • [6] Rollmann, W. (1853). Zwei neue stereoskopische Methoden. Annalen der Physik, 166(9), 186-187. https://doi.org/10.1002/andp.18531660914 (in German)
  • [7] Rojas, G. M., Gálvez, M., Vega Potler, N., Craddock, R. C., Margulies, D. S., Castellanos, F. X., & Milham, M. P. (2014). Stereoscopic three-dimensional visualization applied to multimodal brain images: clinical applications and a functional connectivity atlas. Frontiers in Neuroscience, 8, 328. https://doi.org/10.3389/fnins.2014.00328
  • [8] Zone, R. (2014). Stereoscopic cinema and the origins of 3-D film, 1838-1952. University Press of Kentucky.
  • [9] Wheatstone, C. (1842). Beiträge zur physiologie des gesichtssinnes. Annalen der Physik, 131(S1), 1-48. https://doi.org/10.1002/andp.18421310102 (in German)
  • [10] Rawson, E. G. (1969). Vibrating varifocal mirrors for 3-D imaging. IEEE Spectrum, 6(9), 37-43. https://doi.org/10.1109/MSPEC.1969.5213672
  • [11] Berkley, J., Turkiyyah, G., Berg, D., Ganter, M., & Weghorst, S. (2004). Real-time finite element modeling for surgery simulation: An application to virtual suturing. IEEE Transactions on visualization and computer graphics, 10(3), 314-325. https://doi.org/10.1109/TVCG.2004.1272730
  • [12] Gabor, D. (1948). A New Microscopic Principle. Nature, 161, 777-778. https://doi.org/10.1038/161777a0
  • [13] Kim, Y., Park, J. S., & Kim, S. W. (2019). Virtual reality simulators for endoscopic sinus and skull base surgery: the present and future. Clinical and Experimental Otorhinolaryngology, 12(1), 12-17. https://doi.org/10.21053%2Fceo.2018.00906
  • [14] Won, T.-B., Hwang, P., Lim, J.H., Cho, S.-W., Paek, S.H., Losorelli, S., Vaisbuch, Y., Chan, S., Salisbury, K., Blevins, N. H. (2018). (2018, January). Early experience with a patient-specific virtual surgical simulation for rehearsal of endoscopic skull-base surgery. In International Forum of Allergy & Rhinology (Vol. 8, No. 1, pp. 54-63). https://doi.org/10.1002/alr.22037
  • [15] Kwasniewski, K. (2021, June 5). Przykłady wykorzystania VR 360 w szkoleniach e-learningowych. eTechnologie. https://etechnologie.pl/vr-360-w-szkoleniach-e-learningowych (in Polish)
  • [16] Pirga, M., Kozłowska, A., & Kujawińska, M. (1993). Generalization of the scaling problem for the automatic moiré and fringe projection shape measurement systems. Physical Research, Academic Verlag, 188-193
  • [17] Gryko, Ł., Zając, A., Błaszczak, U. (2019). Characterization of multi-emitter tunable led source for endoscopic applications. Metrology and Measurement Systems, 26(1), 153-169. https://doi.org/10.24425/mms.2019.126332
  • [18] Weisstein, E. W. (2008). Gray code. From MathWorld - A Wolfram Web Resource. https://mathworld.wolfram.com/GrayCode.html
  • [19] Gryko, Ł., & Zając, A., (2015). The use of LEDs in medicine, In Problemy metrologii elektronicznej i fotonicznej. In J. Mroczka (Eds.), Problemy metrologii elektronicznej i fotonicznej (pp. 123-171). Oficyna Wydawnicza Politechniki Wrocławskiej (in Polish)
  • [20] Pluta, M. (Ed.). (1984). Holografia optyczna. PWN. (in Polish)
  • [21] Kaufmann, G. H. (Ed.). (2011). Advances in speckle metrology and related techniques. John Wiley & Sons. https://doi.org/10.1002/9783527633852
  • [22] Kreis, T. (2006). Handbook of holographic interferometry: optical and digital methods. John Wiley & Sons. https://doi.org/10.1002/3527604154.indauth
  • [23] Podbielska, H. (1991, August). Trends in holographic endoscopy. In Holography, Interferometry, and Optical Pattern Recognition in Biomedicine (Vol. 1429, pp. 207-213). SPIE. https://doi.org/10.1117/12.44668
  • [24] Bobak, W., Borowicz, L., Jankiewicz, Z., & Kęcik, T. (1978). Badania nad możliwością wykorzystania holografii świetlnej w diagnostyce jaskry. Klinika Oczna, 48(80), 647-650 (in Polish)
  • [25] Kondrat, M., Szustakowski, M., Gorka, A., Palka, N., Zyczkowski, M., & Niznik, S. (2004, November). Modal interference fiber optic sensor. In Unmanned/Unattended Sensors and Sensor Networks (Vol. 5611, pp. 225-232). SPIE. https://doi.org/10.1117/12.578196
  • [26] Fechteler, P., Eisert, P., & Rurainsky, J. (2007, September). Fast and high resolution 3D face scanning. In 2007 IEEE International Conference on Image Processing (Vol. 3, pp. III-81). IEEE. https://doi.org/10.1109/ICIP.2007.4379251
  • [27] Structured-light 3D scanner (2021, June 5). In Wikipedia. https://en.wikipedia.org/wiki/Structuredlight_3D_scanner
  • [28] Erf, R. K. (1978). Speckle metrology. Academic Press.
  • [29] OPTEC. (2021). Optical fibre image guides [Brochure].
  • [30] Igielski, J., Kujawinska, M., & Pawlowski, Z. (1995, May). Automatic photolaryngoscope for vibration analysis of vocal cords. In Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V (Vol. 2395, pp. 360-364). SPIE. https://doi.org/10.1117/12.209098
  • [31] Wojtaszewski, A., Kujawińska, M., Igielski, J., & Rafałowski, M., (1994). Sposób rejestracji drgań strun głosowych (Patent RP 175300). (in Polish)
  • [32] Wegiel, M., & Kujawinska, M. (2006). Fast 3D shape measurement system based on colour structure light projection. In Fringe 2005 (pp. 450-453). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29303-5_60
  • [33] Van der Jeught, S., & Dirckx, J. J. (2017). Real-time structured light-based otoscopy for quantitative measurement of eardrum deformation. Journal of Biomedical Optics, 22(1), 016008. https://doi.org/10.1117/1.JBO.22.1.016008
  • [34] Szymański, M., Rusinek, R., Zadrożniak, M., Warmiński, J., & Morshed, K. (2009). Drgania błony bębenkowej oceniane Dopplerowskim wibrometrem laserowym. Otolaryngologia Polska, 63(2), 182-185. https://doi.org/10.1016/S0030-6657(09)70103-9
  • [35] Podbielska, H. (1991). Endoscopic profilometry. Optical Engineering, 30(12), 1981-1985. https://doi.org/10.1117/12.56009
  • [36] Kasprzak, H. T., & Podbielska, H. (1994, February). Speckle photography in biomechanical testing. In Microscopy, Holography, and Interferometry in Biomedicine (Vol. 2083, pp. 268-279). SPIE. https://doi.org/10.1117/12.167444
  • [37] Belovolov, M. I., Paramonov, V. M., Belovolov, M. M., Svistushkin, M. V., Svistuskin, V. M., Arkhipov, M. V., Mokoyan, Z. T., Timofeeva, V. A., Kotova, S. L., Timashev, P. S. & Timashev, S. F. (2020). Vibration activity of the vocal folds and a new instrumental technique for their study. Optical Engineering, 59(6), 061611. https://doi.org/10.1117/1.OE.59.6.061611
  • [38] Silva, J. N., Southworth, M., Raptis, C., & Silva, J. (2018). Emerging applications of virtual reality in cardiovascular medicine. JACC: Basic to Translational Science, 3(3), 420-430. https://doi.org/10.1016/j.jacbts.2017.11.009
  • [39] Duan, Y. Y., Zhang, J. Y., Xie, M., Feng, X. B., Xu, S., & Ye, Z. W. (2019). Application of virtual reality technology in disaster medicine. Current Medical Science, 39(5), 690-694. https://doi.org/10.1007/s11596-019-2093-4
  • [40] Samadbeik, M., Yaaghobi, D., Bastani, P., Abhari, S., Rezaee, R., & Garavand, A. (2018). The applications of virtual reality technology in medical groups teaching. Journal of Advances in Medical Education & Professionalism, 6(3), 123. https://doi.org/10.30476/JAMP.2018.41023
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a643061e-e072-47b6-b73b-3ac74b4d04e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.