PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligent Design of an Ultra-Thin Near-Ideal Multilayer Solar Selective Absorber Using Grey Wolf Optimization Linked to Deep Learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study explored the development of an optimal effective solar absorber by leveraging recent advancements in artificial intelligence and nanotechnology. A predictive computational approach for designing a multilayer metal-dielectric thin film solar selective absorber, specifically the SiO2/Cr/SiO2/Cr/SiO2/Cu structure was proposed. The adopted approach integrates the transfer matrix method (TMM) as a predictive electromagnetic tool and combines it with the swarm-based heuristic algorithm grey wolf optimization (GWO) linked to machine learning algorithms, specifically the artificial neural network (ANN). Through dynamic modeling and rigorous testing against multiple static versions, the adopted approach demonstrates exceptional predictive performance with an value of 0.999. The results obtained using this novel GWO-ANN approach reveal near-perfect broadband absorption of 0.996534 and low emission of 0.194170594 for the designed thin film structure. These outcomes represent a significant advancement in photo-to-thermal conversion efficiency, particularly for a working temperature of 500 °C and a solar concentration of 100 suns, showcasing its potential for practical applications across various fields. Additionally, the designed structure meets the stringent thermal stability requirements necessary for current Concentrated solar power (CSP) projects. This emphasizes its suitability for integration into existing CSP systems and highlights its potential to contribute to advancements in solar energy technology.
Twórcy
  • Laboratory of Electronic Systems, Information Processing, Mechanical and Energy, University Ibn Tofail, Kénitra, Morocco
  • Laboratory of Advanced Systems Engineering, ENSA, Kenitra, Morocco
  • Laboratory of Electronic Systems, Information Processing, Mechanical and Energy, University Ibn Tofail, Kénitra, Morocco
Bibliografia
  • 1. Anouar S., 2022. Morocco has invested $5.2 billion in solar energy projects, https://www.moroccoworldnews.com/2022/08/350593/morocco-has-invested-5-2-billion-in-solar-energy-projects
  • 2. Christofaro B., 2022. Small Morocco punches above its weight on renewables, dw.com,https://www.dw.com/en/morocco-powering-ahead-of-other-african-states-on-renewables/a-64093142
  • 3. Baptista, A., Silva F., Porteiro J., Míguez J., Pinto G. 2018. Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings, 8(11), 402.
  • 4. Cai, H., Wang M., Wu Z., Wang X., Liu J. 2022. Design of multilayer planar film structures for nearperfect absorption in the visible to near-infrared. Optics Express, 30(20), 35219.
  • 5. Chen, H.-P., Lee C.-T., Liao W.-B., et al. 2019. Analysis of high-efficiency mo-based solar selective absorber by admittance locus method. Coatings 9(4): 256.
  • 6. Chen, L.-Y., ed. 2021. Optical properties of solar absorber materials and structures. Topics in Applied Physics, Vol.142. Singapore: Springer Singapore. https://link.springer.com/10.1007/978-981-163492-5, accessed October 7, 2023.
  • 7. Ebrahimi, S., Mohammadreza, S.H., Khatibi, S. 2023. Parameter identification of fuel cell using repairable grey wolf optimization algorithm. Applied Soft Computing, 147, 110791.
  • 8. Faris, H., Aljarah, I., Al-Betar M.A., Mirjalili, S. 2018. Grey Wolf Optimizer: A Review of Recent Variants and Applications. Neural Computing and Applications, 30(2), 413–435.
  • 9. Grosjean, A., Soum-Glaude, A., Laurent T. 2021. Influence of Operating Conditions on the Optical Optimization of Solar Selective Absorber Coatings. Solar Energy Materials and Solar Cells, 230, 111280.
  • 10. Hu, E.-T., Guo S., Gu T., et al. 2017. High Efficient and Wide-Angle Solar Absorption with a Multilayered Metal-Dielectric Film Structure. Vacuum, 146, 194–199.
  • 11. Li, V., Roberto. 2018. Optimization of a Perfect Absorber Multilayer Structure by Genetic Algorithms. Journal of the European Optical Society-Rapid Publications, 14(1), 11.
  • 12. Ma, Wenzhuang, Wei Chen, Degui Li, et al. 2023. Deep Learning Empowering Design for Selective Solar Absorber. Nanophotonics 12(18): 3589–3601.
  • 13. Mirjalili, S., Mirjalili S.M., Lewis A. 2014. Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61.
  • 14. Morocco, with the World’s Largest Concentrated Solar Power Plant, among the Leaders in Renewable Energy N.d. Panepinto, A., Snyders, R. 2020. Recent Advances in the Development of Nano-Sculpted Films by Magnetron Sputtering for Energy-Related Applications. Nanomaterials 10(10): 2039.
  • 15. Sakurai, A., Tanikawa, H., Yamada, M. 2014.Computational Design for a Wide-Angle Cermet-Based Solar Selective Absorber for High Temperature Applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 132, 80–89.
  • 16. Seo, J., Jung P.H., Kim, M., et al. 2019. Design of a Broadband Solar Thermal Absorber Using a Deep Neural Network and Experimental Demonstration of Its Performance. Scientific Reports, 9(1), 15028.
  • 17. Ssouaby, S., Naim, H., Tahiri, A., Salmane Bourekkadi, S. 2021. Sensitization Towards Aerosol Optical Properties And Radiative Forcing, Real Case In Morocco. S. Bourekkadi, H. Hami, A. Mokhtari, K. Slimani, and A. Soulaymani, eds. E3S Web of Conferences, 319, 02027.
  • 18. Van Thieu, N., Mirjalili, S. 2023. MEALPY: An Open-Source Library for Latest Meta-Heuristic Algorithms in Python. Journal of Systems Architecture, 139, 102871.
  • 19. Wang, Z.-Y., Hu E.T., Cai Q.Y., et al. 2020. Accurate Design of Solar Selective Absorber Based on Measured Optical Constants of Nano-Thin Cr Film. Coatings, 10(10), 938.
  • 20. Zhang, K., Hao, L., Du, M., et al. 2017. A Review on Thermal Stability and High Temperature Induced Ageing Mechanisms of Solar Absorber Coatings. Renewable and Sustainable Energy Reviews, 67,1282–1299.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a63f9dfc-8fca-4e47-aafe-f19c9f2587a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.