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INTRODUCTION

Addressing the escalating global energy de-
mand while prioritizing environmental preserva-
tion is currently a pivotal challenge. Solar power, 
as a renewable energy source, offers a promising 
solution by reducing dependence on finite fossil 
fuels (Ren et al., 2023). With an annual solar in-
flux exceeding 437,850 terawatt-hours, surpass-
ing global energy consumption, and decreasing 
production costs, solar power emerges as a com-
petitive alternative energy source. In this global 
transition, Morocco, strategically positioned for 
solar potential, has embarked on a groundbreak-
ing initiative, the establishment of the world’s 
largest concentrated solar power plant spanning 

3,000 hectares (Figure 1). This colossal instal-
lation incorporates curved mirrors and an array 
of movable heliostats, focusing sunlight onto a 
central receiver at the top of a tower, marking a 
monumental leap in solar energy infrastructure. 
This transformative decision positions Morocco 
at the forefront of solar power generation, shap-
ing the nation as a hub for research and economic 
viability in the solar energy domain.

Concentrating solar power (CSP) plants, 
renowned for harnessing high-temperature so-
lar energy, play a pivotal role in transitioning to 
cleaner and more efficient energy sources. The 
receiver, responsible for converting concentrated 
solar energy into heat, is a linchpin in the power 
generation process. Within the solar-to-thermal 
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conversion process, solar selective absorbers as-
sume a crucial role. These absorbers intricately 
capture incident photons within film structures 
across the solar radiation wavelength range, curb-
ing heat loss by suppressing infrared re-radiation. 
The effectiveness of these absorbers crucially 
hinges on two primary criteria: solar absorptance 
(α) and thermal emittance (ε).

Advancements in achieving highly selective 
absorbing coatings have birthed multilayer solar 
selective absorbers. By employing alternating di-
electric and metal layers (D-M-D), these designs 
intensify solar absorption through multiple reflec-
tions at layer interfaces. They offer broad solar 
radiation wavelength range coverage, adaptabil-
ity to various angles, low thermal emittance, high 
stability, and flexible fabrication methods com-
pared to conventional designs.

The amalgamation of nanotechnology and 
artificial intelligence is propelling the develop-
ment of more efficient and cost-effective solar 
selective absorbers. Their collaboration signifi-
cantly enhances energy absorption and minimizes 
heat loss, furthering the evolution of solar energy 
technology.

The genetic algorithm (GA) and particle 
swarm optimization (PSO) are leading algo-
rithms in the design and decision-making pro-
cess (Gliti et al. 2023). Li Voti (2018) employed 
a genetic algorithm (GA) to search for optimal 
thicknesses in transparent conducting oxides and 
transition-metal nitrides, specifically in ITO/TiN 
multilayered structures with 6, 8, and 10 layers, 
aiming to achieve very high absorption. (Cai et 

al. 2022) also utilized GA in a design approach 
by adding Fe-MgF2 layers on the Fe substrate, 
achieving an absorption efficiency exceeding 
97.9% in the wavelength range of 400–2000 nm. 
Recently, researchers have begun integrating 
machine learning algorithms in this field. Seo et 
al. (2019) computational methods, such as rigor-
ous coupled-wave analysis and the finite-differ-
ence time-domain method, are often employed 
to simulate light-structure interactions in the 
solar spectrum. However, those methods require 
heavy computational resources and CPU time. 
In this study, using a state-of-the-art modeling 
technique, i.e., deep learning, we demonstrate 
significant reduction of computational costs dur-
ing the optimization processes. To minimize the 
number of samples obtained by actual simula-
tion, only regulated amounts are prepared and 
used as a data set to train the deep neural net-
work (DNN) employed modeling technique to 
minimize the computational cost of an optimiza-
tion process using GA. DNN was employed to 
construct a robust model capable of predicting 
solar absorptance for various geometric param-
eters. By the same approach Ma et al. (2023) uti-
lized a DNN architecture employing the multi-
objective double annealing algorithm to discern 
relationships between parameters of complex 
nanostructures and optical response spectra, 
enabling real-time prediction. All these efforts, 
research endeavors, and predictive capabilities 
converge towards the common goal of achieving 
a quasi-perfect solar absorber.

Figure 1. World’s largest concentrated solar power plant, Noor 
Ouarzazate Solar Complex, Morocco (Anouar, 2022))
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The conducted research aimed to employ me-
taheuristic and machine learning algorithms to 
predict and improve the optical efficiency of solar 
selective absorbers. Building upon the established 
multilayer absorber structure (SiO2/Cr/SiO2/Cr/
SiO2/Cu) as a reference (Wang et al., 2020; Wu 
et al., 2021), the study objective was to maximize 
its thermal photoconversion through the use of 
the Transfer Matrix Method. To achieve this opti-
mization, two AI algorithms were employed: the 
Multi-layer Perceptron for predictive dynamic 
modeling and the grey wolf optimization algo-
rithm to challenge the dominance established by 
GA and PSO in this field, thereby ensuring a more 
efficient solar-to-thermal conversion.

DESIGN OF THE MULTILAYER SOLAR 
SELECTIVE ABSORBER

In the pursuit of achieving the ideal multilayer 
solar selective absorber, a method involving the 
alternate arrangement of dielectric and semi-trans-
parent metal layers was employed. This arrange-
ment triggers the occurrence of plasmon resonance 
and the Fabry-Perot (F-P) cavity (Cai et al. 2022), 
a fundamental optical phenomenon where light be-
comes trapped and resonates between two parallel 
reflective surfaces, as it is shown in Figure 2. 

F-P resonators serve to amplify and select 
particular wavelengths of light, with the resonant 
wavelengths determined by the spacing and re-
flectivity of the mirrors. Additionally, surface 
plasmons, which are collective oscillations of 
electrons at the surface of a metal, play a signifi-
cant role in this investigation.

The lower metal layer in a solar absorber 
serves two purposes: it acts as a reflector to 

redirect infrared radiation emitted by the heated 
substrate, reducing the thermal emittance of the 
absorber, and it minimizes the transmittance of 
light. The semi-transparent metal layer in the ab-
sorber enhances the absorption of incident solar 
light through multiple reflections with the reflec-
tive metal layer, known as the destructive interfer-
ence effect. The thickness of the semi-transparent 
layer typically ranges from a few nanometers to 
around twenty nanometers, depending on the opti-
cal properties of the thin metal layer. These semi-
transparent metal layers are very thin, typically 
less than 5 nm, and additional layers can expand 
the range of wavelengths that are highly absorbed.

Figure 3 displays the materials comprising 
the studied multi-film, optimized for maximum 
photothermal efficiency. A copper (Cu) layer was 
chosen at the bottom, with a thickness exceeding 
100 nm, ensuring zero light transmission in the 
film structure. Silicon dioxide (SiO2) serves as the 
selected dielectric material. The initial SiO2 layer 
functions as both an anti-reflection and protective 
layer. The second and third SiO2 layers serve as 
phase-matching layers, enabling a second reso-
nance for higher wavelengths. Chromium (Cr), a 
resonating metal, is well-suited as the absorption 
layer within the multilayered structure due to its 
optimal match with the ideal optical properties of 
the absorption metal, supporting plasmonic reso-
nance in the visible spectrum. Its higher melting 
point renders it less chemically reactive and com-
paratively stable for operation in elevated tem-
perature conditions. Studies suggest that the opti-
cal constants of Cr depend on thickness (Wang et 
al., 2020), necessitating specific measurements in 
thin film rather than bulk material in advance.

The aim of our current research is to theo-
retically design a 6-layered metal-dielectric 

Figure 2. Schematic diagram of the designed six-layered SiO2/Cr solar selective absorber
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multilayered film structure (Cu/SiO2/Cr/SiO2/
Cr/SiO2) as a selective solar absorber. We aim to 
enhance its photothermal efficiency by adjusting 
the thickness values, striving to approach an ideal 
scenario. The transfer matrix method (TMM) is 
employed for this purpose.

While particle-swarm optimization and ge-
netic algorithms have traditionally dominated 
the direct optimization of power conversion for 
solar selective absorbers, our study introduces a 
novel approach. For the first time, we will utilize 
a potent swarm-based algorithm known as the 
grey wolf algorithm. Combining this with neural 
networks, the purpose of this work is to precisely 
determine and predict the ideal configuration.

Spectrally selective coating architecture

Within the domain of physical optics, absorp-
tion refers to the process by which a material as-
similates incident light or electromagnetic radia-
tion, resulting in the conversion of the energy car-
ried by photons into other forms, primarily thermal 
energy. It is important to note that absorption does 
not imply the complete annihilation of light ener-
gy; rather, it involves the transfer of energy from 
the incident photons to the electrons or molecules 
present within the absorbing material. The interac-
tion between electromagnetic radiation and a ma-
terial is quantified by its intrinsic parameters. The 
amount of light reflected (R) and transmitted (T) is 
determined by the material properties (Figure 4).  
Conservation of energy dictates that the sum of 
transmission, reflection, and absorption for each 
wavelength equals unity as illustrated in Figure 4.
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An ideal selective solar absorber requires 
high absorption within the 250–2500 nm solar 
radiation range while maintaining low absorp-
tion and high reflection beyond 2500 nm. This 
demands 100% absorption/emittance in the 
shorter wavelength region and zero absorbance/
emittance in the longer wavelengths, separated 
by a distinct transition at the wavelength λc. 
The red curve in Figure 5 represents the ideal 
case, clearly indicating an abrupt transition at  
λc = 2500 nm from minimal reflection at 0% to 
a maximum reflection of 100%. As expressed in 
Equation 2, the goal is to transition sharply from 
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suring radiative loss remains below the incident 
solar irradiance. Additionally, it should demon-
strate 100% absorption in the solar spectrum, 
being omnidirectional and polarization-indepen-
dent, while exhibiting minimal to zero emissiv-
ity in the blackbody radiation spectral window, 
as shown in Figure 5.
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Optical performance

To evaluate a solar selective absorber’s per-
formance, the solar absorptance (α (λ,θ)) is cru-
cial, indicating the ratio of absorbed solar flux 
density over what the absorber receives from the 
Sun. Calculations rely on the ASTM G173-03 
Direct and Circumsolar (DC) AM1.5 spectrum, 
covering 300 to 2500 nm at 5 nm intervals. The 
absorbed solar flux density is derived from the ab-
sorptance (α (λ) = 1 – R(λ)) for opaque systems, 
integrated over the solar spectrum Is(λ).

Figure 3. Schematic of the designed absorber 
with the selected candidate materials

Figure 4. Three phenomena achieved 
when light interacts with matter, reflection, 
absorption and transmission of a light beam
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a broad spectral range for accuracy (Grosjean, 
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The figure of merit (FOM) employed for pho-
to-thermal conversion efficiency assesses the ab-
sorber’s ability to convert incident solar radiation 

into heat. It is calculated as the ratio of absorbed 
solar flux density minus radiative thermal losses, 
divided by the total concentrated solar flux densi-
ty received by the absorber (as represented by the 
equation 6). The variables in these equations, σ, Ta 
and C, and correspond to the Stefan–Boltzmann 
constant, operating temperature, solar concentra-
tion, and solar flux intensity, respectively. The pa-
rameter B, associated with the transmittance of the 
glass envelope, is typically set to 0.99.

For instance, in this study, the conditions 
were an operating temperature Ta of 500 °C, a so-
lar concentration of 100 suns, and a solar flux in-
tensity of 1000 W/m2 (approximately for ASTM-
G173 DC). The heliothermal efficiency indicates 
the suitability of a coating for high-temperature 
solar thermal conversion (Ta >> T0).

PHYSICAL VAPOR DEPOSITION

Various wet chemical methods, including 
electrodeposition, electro-less deposition, an-
odization, and sol-gel techniques, have been in-
vestigated for the fabrication of multi-layer so-
lar selective absorbers. However, these methods 
exhibit lower chemical and thermal stability and 
raise environmental concerns related to pollution. 
Consequently, physical vapor deposition (PVD) 
has emerged as the preferred technology for craft-
ing these absorbers due to its heightened chemi-
cal and thermal stability and diminished environ-
mental impact (Panepinto and Snyders 2020).

PVD and chemical vapor deposition (CVD) 
are widely utilized in the development of so-
lar energy selective absorbers. PVD, a pivotal 

Figure 5. Spectral reflectance of an idealized solar selective coating with the critical wavelength (λc).  
The solar spectral irradiance (ASTM-G173-03) and the normalized blackbody radiation spectrum at 500 °C
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tool in nanotechnology, as depicted in Figure 6, 
involves the vacuum deposition of solid mate-
rial, which vaporizes and forms a thin film on 
a substrate. Techniques such as sputtering and 
thermal evaporation are frequently employed in 
PVD, enabling precise atom-by-atom deposition 
and control over the film’s density, structure, and 
atomic composition. Coatings deposited via PVD 
typically possess thin thicknesses, ranging from 
atomic layers (less than 10 angstroms (Å) to 0.1 
nanometers (nm)) to coatings of several microns. 
This is achieved through meticulous control of 
deposition parameters, including deposition rate, 
temperature, pressure, and substrate properties 
(Baptista et al., 2018).

ELECTROMAGNETIC CALCULATION

Optical phenomena refer to the interactions be-
tween electromagnetic radiation waves and matter. 
These interactions can be explained using either 
classical or quantum theories. Maxwell’s equations 
are fundamental in understanding these phenom-
ena and are applicable in both classical and certain 
semiclassical situations (Zhang et al. 2017).
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Figure 6. Schematic diagram of physical vapor deposition

Figure 7. Electromagnetic Light wave travels from air (n = 1; k = 0) into multi film system, transparent film 2  
(n = 2; k = 0). and then into the absorbing film 1 (n = 4; k > 0) The phase velocity and wavelength change in each 
material depending on its complex index of refraction and the thickness of each layer
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In the case of solar rays, which are a type of 
electromagnetic radiation, Maxwell’s equations 
are used to derive their essential physical prop-
erties. When dealing with scenarios where there 
are no free charges and the materials involved are 
uniform dielectrics, Maxwell’s equations specifi-
cally describe the electric vector (E) of solar rays.

In this context, the symbols E, µdiel, εdiel, 
kext, nr and λ represent the electric field strength, 
dielectric permeability, dielectric permittivity, 
dielectric conductivity, extinction coefficient, re-
fractive index, and wavelength, respectively. On 
the basis of the one-dimensional solution set, 
when a solar ray enters a conductive medium 
(where δdiel ≠ 0), it transforms into an evanes-

cent wave. The term 
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the amplitude attenuation, with, kext indicating the 
extent of attenuation. Therefore, kext serves as a 
measure of the solar energy absorbed by materials. 
This phenomenon is well illustrated in Figure 7.
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determined by the combination of the refractive 
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dex n, a dimensionless value, characterizes how 
light changes speed or direction upon entering a 
material from air or vacuum.

The complex refractive index N(λ) = n(λ) + 
+ i k(λ) integrates both the real part (refractive 
index, n) and the imaginary part (extinction coef-
ficient k), representing how a material interacts 
with light, accounting for its bending and ab-
sorptive properties. This combination allows for  
a comprehensive description of the interaction of 
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The variables involved in this calculation in-
clude Nr, representing the refractive index of the 
r-th layer, dr, which stands for the thickness of the 
r-th layer, Yr derived from Snell’s law, and λ, sig-
nifying the wavelength. Notably, this calculation 
can address the issues associated with solid angle 
dependence. The optical admittance, denoted as 
Yr, is expressed as

Yr = Y0Nr cosθr for TE wave
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In the context of this study, Y0 represents the 
optical admittance within a vacuum or free space. 
The optical admittance in the substrate, denoted 
as Ys, is determined by:  

Ys = Y0Ns cosθs for TE wave
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The calculation of the reflectance in a mul-
tilayer absorber involves the solution of Eq. 9. 
Once the characteristic matrices, denoted as B 
and C, are obtained through a numerical proce-
dure, the reflectance can be expressed as follows:
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Then the optical admittance of the single lay-
er can be obtained by Y = C/B.

By utilizing the complex conjugate, denoted 
by *, and setting η0 = 1, one can theoretically 
derive the solar absorptance and thermal emit-
tance for diverse optical thin film systems. These 
outcomes are instrumental in the design and opti-
mization of the optical traits within multilayered 
solar selective absorbers (Chen, 2021).
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The process of fitting reflectance data plays 
a crucial role in predicting and managing the be-
havior of materials under different conditions and 
wavelengths. By accurately representing the be-
havior of a material through mathematical mod-
els, this approach enables the design and advance-
ment of solar absorbers that effectively perform 
in real-world applications. Fitting reflectance 
data involves optimizing mathematical models to 
closely match experimental or measured data, en-
hancing the understanding of the material proper-
ties and refining their characterization. 

Duffie and Beckman proposed a calculation 
method that utilizes measurements of monochro-
matic reflectance, R(λ), as the available data. By 
using this data, the spectrum can be easily divided 
into segments (using the blackbody spectrum for 
emittance or the incident solar irradiance energy 
spectrum for absorptance) and perform numerical 
integration to determine α or ε. Having a grasp of 
these two-performance metrics enables to estab-
lish a benchmark for the developed multilayer thin 
film, specifically for photothermal applications.

PREDICTION AND OPTIMIZATION

The research objective was to combine a me-
taheuristic algorithm for optimal solutions with a 
Machine Learning algorithm for precise predic-
tions. Metaheuristics aim to identify satisfactory 
solutions for complex optimization problems that 
are challenging to solve. They specifically address 
non-linear, non-convex, discontinuous, and dis-
crete optimization problems, especially those that 
are too large or intricate for traditional methods. It-
eratively improving solutions, metaheuristics work 

to refine problem-solving outcomes. The proposi-
tion to the research community emerged subse-
quent to the publication of the no free lunch (NFL) 
theorem, which states that no algorithm surpasses 
all others across all optimization problems. Within 
the realm of metaheuristic algorithms, swarm-
based optimization draws particular inspiration 
from the collective behavior observed in social 
animals such as birds, fish, and ants.

On the other hand, regression, a supervised 
machine learning technique, predicts continu-
ous output based on input features. It establishes 
a mathematical function or best-fitting line that 
correlate input variables to the desired output. 
The primary goal of regression is to find the most 
accurate model that minimizes the error between 
predicted and actual target values.

In the considered case, the optical properties of 
Cr were selected as an illustrative example, sourced 
from the Palick database (Hu et al. 2017). This 
data follows a time sequence format, where wave-
length acts as the independent variable and (n, k)  
as the dependent variables for static modeling. 
The goal was to construct a static model to predict 
reflection responses for any configuration. Subse-
quently, fitting these reflection responses through 
dynamic modeling aids in deriving photothermal 
conversion, serving as our primary objective.

The curve in Figure 8(a) depicts the optical 
properties of Cr, showcasing a scatter plot with 
the red dot representing the Extinction coefficient 
(k) and the blue dot indicating the refractive index. 
Notably, fluctuations and non-linearity are appar-
ent in both. In Figure 8(b), a box plot illustrates 
both optical properties of Cr. Points outside the 
whiskers may indicate potential outliers, poten-
tially influencing the accuracy of the regression 

Figure 8. (a) Optical constants refractive index n, and extinction coefficient 
k of the Cr, (b) Box plot representation of both variables
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task. The majority of data is concentrated in the 
wavelength range 0.2–5 µm, impacting calcula-
tions in the infrared.

The necessity for a regression model arises 
from its capability to address non-linearity, adapt 
to dynamic modeling with sequentially acquired 
data, and continuously refine the best predictor 
for future data. It must be robust against outliers 
and enable extrapolation beyond experimental 
values. Once the relationship is established, the 
regression model can predict values of the depen-
dent variable at unmeasured wavelengths, serving 
both interpolation and extrapolation purposes. In 
the considered scenario, extrapolation for the in-
frared up to 50 µm was utilized. Given the com-
plex non-linear patterns within the data, a highly 
adaptable model capable of capturing these intri-
cacies is imperative. Neural network regression 
emerges as a more fitting choice, particularly in 
handling outliers effectively when appropriately 
configured. Neural networks offer enhanced suit-
ability for grasping complex patterns and may 
serve better in managing outliers within the data.

Multi-layer perceptron

The multilayer perceptron (MLP) is an impor-
tant type of artificial neural network (ANN) that 
was developed based on neural network models 
and associated theories, the MLP incorporates 
variable synaptic weights, which enables it to 
learn using specific rules. It consists of an input 
layer, multiple hidden layers, and an output layer 
as shown in the Figure 9. Each node in the MLP 
calculates a weighted sum of the inputs, applies 
a nonlinear activation function, and produces an 
output. MLPs are widely used in machine learning 

and pattern recognition because they have the 
ability to capture complex relationships between 
inputs and outputs. They can be trained using vari-
ous algorithms, including backpropagation, which 
adjusts the network weights to minimize the dif-
ference between predicted and actual outputs.

Deep learning presents a marked advantage 
over traditional machine learning in feature de-
sign. In the conventional approach, human effort 
is heavily involved in crafting features, whereas 
deep learning diverges by autonomously discern-
ing the most relevant features from raw data, 
thereby mastering intricate patterns and nonlinear 
relationships. Neural network regression, adept at 
capturing complex non-linear patterns within data, 
becomes the preferred choice when these patterns 
are intricate and demand a highly adaptable model. 
Neural networks, particularly multilayer percep-
trons (MLPs), excel in capturing non-linearities 
through their hidden layers non-linear activation 
functions. These networks possess the ability to 
approximate nearly any continuous function pro-
vided with sufficient data and a fitting architecture, 
as each neuron contributes to learning simple func-
tions that collectively form more complex ones. 
This stands in sharp contrast to traditional models 
where manual feature engineering is a norm for ex-
tracting informative features from raw data. 

The chosen model comprises fully connected 
layers whose number and size adapt to the spe-
cific problem at hand. These layers are intercon-
nected by rectified linear unit (ReLU) activation 
functions. Parameter updates are performed us-
ing the Adam optimizer, and the loss function is 
defined as mean squared error (MSE). The input 
data remains non-standardized, featuring only 
wavelength values in µm units, reflecting authors’ 

Figure 9. The structure of the nonlinear dynamic autoregressive neural networks
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deliberate choice. The entire model was construct-
ed using the Keras tensor flow library in Python. 
The predictive network consists of five fully con-
nected hidden layers, each with 128, 64, 32, and 
16 units, separated by ReLU layers. The training 
process involves 1000 epochs for each calculation.

Grey wolf optimization algorithm

GWO, a burgeoning swarm intelligence (SI) 
algorithm, introduced in 2014 by (Mirjalili et al., 
2014), draws inspiration from the collaborative 
hunting behaviors of grey wolves in nature. Dif-
fering from PSO, GWO requires less memory as 
it employs a single vector of position and only 
retains the three best solutions. This algorithm or-
ganizes the population of potential solutions into 
four hierarchical layers (Figure 10), mirroring 
distinct roles within a wolf pack. The Alpha wolf 
symbolizes the best solution found, leading and 
coordinating the search, while the Beta and Delta 
wolves represent the second-best and intermedi-
ate solutions, respectively, contributing to the ex-
ploration-exploitation balance. The Omega wolf, 
the least dominant, explores extensively, ensuring 
diversity and preventing premature convergence 
(Ebrahimi  et al., 2023). Through iterative posi-
tion updates emulating social interactions and 
hunting behavior, GWO seeks to converge the 
positions of these wolves toward the optimal so-
lution, advancing the search process.

MATHEMATICAL MODELS OF GWO: 

Encircling prey 

As previously discussed, the initial phase of 
the hunting process involves pursuing and sur-
rounding the target as it is shown in Figure 11. In 

the mathematical model adopted by GWO, two 
points within an n-dimensional space are con-
sidered, and the location of one point is updated 
based on the position of the other. This simulation 
is represented by the following equation:
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Here, X(t + 1) represents the subsequent posi-
tion of the wolf, while X(t) signifies its current 
location. A stand for a coefficient matrix, and D 
is a vector determined by the prey’s location (Xp), 
calculated as follows:
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where: C = 2r2.

The variable r2 is derived from a random vec-
tor within the range [0, 1]. These equations facili-
tate the relocation of a solution around another so-
lution. Notably, the utilization of vectors enables 
the application of these equations across various 
dimensions. Figure 12 offers an illustration of 
potential positions of a grey wolf concerning its 
prey. It is worth noting that the random elements 
within these equations imitate diverse step sizes 
and movement velocities of grey wolves. The 
equations dictating these values are as follows:
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The elements of vector a⃗ diminish linearly 
from two to zero as the iterations progress.

Hunt

The introduced equations grant a wolf the 
ability to move within a hypersphere surround-
ing the prey. Nonetheless, these equations alone 
do not fully encapsulate the social intelligence of 
grey wolves. As emphasized earlier, social hierar-
chy significantly influences hunting strategies and 

Figure 10. The social structure of grey 
wolves, dominance decreases progressively 

from the highest rank downwards
Figure 11. Schematic representation of the 

encirclement of the prey by the wolves
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the survival of wolf packs. To replicate this hier-
archy within the GWO framework, three optimal 
solutions are designated as alpha, beta, and delta. 
While nature might have multiple wolves in each 
category, for simplicity, the GWO method as-
sumes a singular solution belonging to each class.

The concepts of alpha, beta, delta, and omega 
are depicted in Figure 10, with the primary aim 
being to discover the minimum within this search 
landscape. As illustrated in the Figure 12, alpha 
is the closest solution to the minimum, succeeded 
by beta and delta. The remaining solutions are 
classified as omega wolves. Although Figure 12 
portrays only one omega wolf, the actual count 
can be higher.

In the GWO method, it is presumed that alpha, 
beta, and delta consistently represent the three best 
solutions obtained thus far. As the global optimum 
for optimization problems remains unknown, it is 
hypothesized that alpha, beta, and delta possess a 
good estimation of its location (Faris et al. 2018). 
This assumption is founded on their status as the 
best solutions within the entire population. Conse-
quently, other wolves are mandated to update their 
positions in the following manner:
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Dα, Dβ and Dα are calculated using Eq:
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Algorithm development 

Each initialized wolf is chosen as a search 
agent, representing a configuration of 6 multi-
layered selective absorbers. To optimize the 
system successfully, it is crucial to understand 
the reflective response of each configuration 
represented by the search agents. Hence, a deep 
learning approach was employed, renowned 
for its inherent flexibility and adaptability. Its 
capability to adjust parameters during the op-
timization process, similar to a metaheuristic 
approach, makes it particularly suitable for dy-
namic modeling. This adaptability enables the 
model to continually learn and refine its param-
eters, adapting to the evolving nature of data in 
real-time or dynamic scenarios. The capacity of 
MLP to adapt and optimize its parameters aligns 
with the changing conditions and diverse com-
plexities often encountered in dynamic systems, 
combining online or dynamic modeling with the 
grey wolf optimization (GWO) algorithm. This 
approach involves adapting the parameters of the 
MLP model as part of the optimization process.

MLP facilitates the prediction of the reflective 
response for each agent’s parameter configura-
tion, as illustrated in Figure 13. These predictions 
are guidance in calculating the photothermal con-
version. This process iterates in each loop. Neural 

Figure 12. Position updating of the omega wolf, depending on the position of the three leading wolves
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networks are often perceived as ‘black-box’ mod-
els or autoregressive nonlinear regressors. While 
they can model complex relationships, the op-
timization process is developed with the aid of 
the Python library MEALPY developed by Van 
Thieu and Mirjalili (2023).

RESULTS AND DISCUSSION

Boundary conditions of the multilayer SSA

To avoid reaching infinity and achieve logi-
cal, manufacturable results, constraints are imple-
mented to ensure that the solutions generated by 

Figure 13. Flowchart of grey wolf optimizer algorithm (GWO) algorithm for 
optimization linked to artificial neural network (ANN) for dynamic modeling
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the metaheuristic algorithm comply with real-
world restrictions, including physical or practical 
limitations. These constraints direct the search to-
wards feasible and practical solutions, conform-
ing to real-world constraints and specific problem 
requirements.

The advancements in PVD processes, such 
as molecular beam epitaxy (MBE) and sputter-
ing, have expanded the boundaries of thin film 
fabrication to sub-nanometer levels. To manu-
facture ultrathin films, the authors embraced the 
challenge of significantly reducing the thickness 
of the Cr absorber layer to 2 nm while maintain-
ing favorable optical characteristics as shown in 
the Figure 14. The film thickness of the metal 
absorption layer used in the multilayered solar 
selective absorber consistently remained be-
low 30.0 nm, which is smaller than its electron 
means free path. The dielectric layers were con-
fined within a thickness range of 5–100 nm, to 
create sufficient space for selected light reso-
nance, Table 1 shows the thickness constraint 
values for each parameter employed in the opti-
mization process.

A group of 20 wolf search agents over 150 
iterations was utilized, leading to a cumulative 
30,000 calculations throughout the entire process. 
This encompassed the evaluation of 30,000 mod-
els. To optimize the objective function ηsolar-th and 
maximize its value, the multilayer was subjected to 
testing under an irradiance equivalent to 100 suns, 
maintaining an operating temperature of 500 °C.

Regression metrics

To assess and evaluate the performance of 
the proposed models along with variations in the 
configuration, several statistical indices are em-
ployed. These metrics offer quantifiable measures 
of how accurately the model’s predictions align 
with the actual values. Two quantifying accuracy 
metrics used in this analysis are the Mean Squared 
Error (MSE) and Mean Absolute Error (MAE), 
which provide a numerical gauge of the proxim-
ity between the model’s predictions and the actual 
values. Lower values of these metrics indicate bet-
ter performance. Additionally, the R-squared (R²) 
metric offers insight into how well the model ex-
plains the variance in the data. It is a standardized 
measure ranging from 0 to 1, where a value closer 
to 1 indicates superior model performance.
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where: n – the number of samples;  
Yi – the actual value;   
Ŷi – the predicted value;   
Y̅i – the mean of the actual values.

Figure 14. Boundary condition of the metal Cr and the dielectric SiO2 layers

Table 1. The constraint of each layer thickness in the multilayered thin film absorber
Design parameters d1 d2 d3 d4 d5

Lower bound 5 2 5 2 5

Upper bound 100 30 100 30 100
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Static modeling result

For this static modeling, leave-one-out cross-
validation (LOOCV) was utilized due to the scar-
city of data. LOOCV tends to exhibit lower bias 
compared to other cross-validation methods be-
cause it trains the model on almost all data points. 
Static modeling involves constructing a model 
using a fixed dataset without continuous updates 
or modifications. These models are trained on 
specific datasets and do not adapt automatically 
to new incoming data.

A static model that accounts for the variation 
in optical properties across all wavelengths was 
employed first. This was achieved by construct-
ing two nonlinear models: the first for the refrac-
tive index ‘n’ and the second for the extinction 
coefficient ‘k.’ The effectiveness of the model 
was a major element in the precise calculation 
of reflectivity. Once these two values were de-
termined for an entire array of wavelengths, they 
could be combined to build the complex refrac-
tive index. Implementing this complex refractive 
index into the transfer matrix Method (TMM) 
formulas enabled to compute the reflection array. 
This component is crucial and currently missing 
for a comprehensive understanding of multi-layer 
performance. As mentioned earlier, for SiO2, ‘n’ 
remains constant across all wavelengths. Simi-
larly, for the substrate Cu, a calculation method 
similar to that used for Cr was proposed.

From Figure 15, and the regression metrics 
results already mentioned in Table 2, it can be 
clearly seen that the model avoids overfitting 
and perfectly describes the optical reaction to all 
wavelength variations. Both the refraction and 
the extinction coefficients for the Cr film increase 
with the wavelength, showing a metal optical 
dispersion behavior. Additionally, in the case of 
extrapolation, the model maintains its increasing 
nature, which is physically accurate.

Dynamic snapshot ensemble

Online or dynamic modeling involves con-
structing models that continuously adapt to new 
data. As mentioned before, the regression mod-
eling task is one part of the optimization loop.  
In each iteration step, the model receives an up-
date of reflection data with each change in con-
figuration. To assess the accuracy, consistency, 
adaptability, and performance of the dynamic deep 
learning model, it was implemented in multiple 
static versions and compare their outcomes. This 
process includes creating snapshots of the dynamic 
model at different time points, treating each snap-
shot as an independent static model for evaluation.

An illustrative example of the process is 
shown in Figure 16. Data was randomly se-
lected and shuffle trained based on optimization 
constraints, choosing six configurations, and 
evaluating prediction accuracy using regression 
metrics. The term ‘ensemble’ is used because 

Figure 15. The ANN model predicted on (n,k) test data, and extrapolated over 30 µm

Table 2. Regression metrics score from fitting experimental value refraction and the extinction coefficients for the 
Cr film

Regression metrics R2 MAE MSE

n (λ) 0.9546 0.227768490853133 0.483468424

K (λ) 0.9953593560375755 0.2068494341174762 0.3892838233448534
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it represents a collection of static models, each 
capturing the dynamic model’s state at a specific 
moment in time. These models collaborate to 
collectively enhance predictions and adaptabil-
ity. Each snapshot can be considered a distinct 
static model, where the model’s parameters are 
frozen at the time of the snapshot. Consequently, 

each snapshot operates as an independent model 
without further adaptation.

From the obtained results and the obser-
vations in the curves (Figure 17) as well as the 
results from Table 3, in terms of photothermal 
conversion and overall optical metrics (such as 
absorption and emission), the current scenario is 

Figure 16. Dynamic modeling for each agent in each iteration

Table 3. Optical performance and regression metric for the 6-configuration shuffled from the constraints

No. d1 (nm) d2 (nm) d3 (nm) d4 (nm) d5 (nm) R2 MAE MSE α % ε (at 500°C) η (100 
sun )

Config1 37.62 23.21 45.30 27.45 14.59 0.9999 0.0006 5.923e-07 0.496 0.14205 0.4605

Config2 84.64 16.98 69.29 6.80 83.68 0.9999 0.00078 1.0106 0.488 0.1555 0.45458

Config3 25.15 3.13 76.96 20.38 98.003 0.99997 0.00057 6.20015e-07 0.486 0.14844 0.52450

Config4 29.62 14.16 77.36 5.61 26.49 0.9999 0.00128 3.8971e-06 0.5482 0.13744 0.5245

Config5 54.16 27.78 64.71 21.87 12.51 0.999 0.00057 9.4893e-07 0.5476 0.1646 0.4759

Config6 95.43 9.903 43.41 25.15 92.67 0.9999 0.00053 5.2470e-07 0.5393 0.1364 0.5055

Figure 17. Spectral reflection response curves of the 6-configuration shuffled from the constraints
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significantly distant from the ideal situation, the 
value of the final yield does not reach its maxi-
mum. This indicates the necessity for decisions to 
be made with extreme precision, where even the 
slightest deviation of a single nanometer is intol-
erable. the primary interest in this approach lies 
in the accuracy of prediction. the model’s perfor-
mance across all six configurations, as depicted in 
the tables, illustrates that the  column consistently 
maintains a favorable predictive value. The same 
holds for MAE and MSE, which remain as mini-
mal as possible. This reinforces the observation 
that the model sustains both adaptability and con-
servatism in its pursuit of accuracy at every stage.

Final optimization result – after completing 
the optimization process, it is evident that the 
decisive configuration for enhanced absorption 
was achieved in the early stages of the hunt (Fig-
ure 18), yielding a fitness value of η = 0.959275. 
The results of the decision parameters and their 
corresponding absorption and emission values 
are in Table 4. This optimal configuration con-
sists of SiO2 (98.0756 nm) / Cr (2.13736 nm) / 
SiO2 (71.90734 nm) / Cr (2.83286 nm) / SiO2 
(28.77155 nm) / Cu (>100 nm) and demon-
strates broadband near-perfect absorption over 
the considered range. 

Figure 19 shows the reflectance spectra re-
sults obtained from the parameters acquired by 
the GWO-ANN optimization process (Table 4). 

Clearly, in the visible region, the reflectance spec-
trum of the simulation remains below 1% for the 
majority of the solar spectrum, indicating mini-
mal reflection. A slight transition occurs, leading 
to a maximum absorption of 0.9965%. While in-
troducing additional metal-dielectric stacks could 
potentially further widen the absorption band-
width, this would require more effort in manufac-
turing without significant improvement.

The explanation for the observed resonances 
lies in the thickness values of each dielectric layer, 
where net phase shifts, including reflection phases 
at both top and bottom interfaces, and accumulat-
ed propagation in the dielectric layer contribute to 
thin film interference effects. The reflective prop-
erties of metal layers (Cr, Cu) also play a role in 
selectively absorbing and reflecting incident solar 
radiation. The spacing between the mirrors and 
their reflectivity determine resonant wavelengths.

The Fabry-Perot resonance phenomenon oc-
curs when the thickness of the layers in the mul-
tilayer structure is a multiple of half the wave-
length of the incident light, where m is the mode 
number). A direct proportionality between these 
variables is apparent.

It can be concluded that the first layer exhibits 
a resonance phenomenon at lower wavelengths, 
while the second layer traps higher wavelengths, 
especially in the mid-infrared region. Accord-
ing to the results obtained from the GWO-ANN 

Figure 18. Convergence curve of the six-layered SiO2/Cr film structure 
at the working condition of 600 K and 100 Suns

Table 4. Optical performance of the optimized SSA, parameters Recipe For C = 100, Ta = 500 °C
Parameter d1 d2 d3 d4 d5 α ε (at 500°C) η (for 100 sun )

GWO linked ANN 98.0756 2.13736 71.90734 2.83286 28.77155 0.996534 0.194170594 0.959275
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algorithm, the thickness of the dielectric gradu-
ally decreases. The combination of these factors 
leads to constructive interference, enhancing ab-
sorption at specific wavelengths

CONCLUSIONS 

Exploiting the prediction accuracy and adapt-
ability to feature design inherent in ANN algo-
rithms, this study integrated the ANN into the op-
timization process of the GWO. This integration 
served as a competitive alternative to the domi-
nant Algorithms (GA, PSO) in the thin film de-
sign field. Leveraging the transfer matrix method 
tool, we successfully designed a six-layered D-M-
D solar selective absorber with the configuration 
SiO2 (100 nm) / Cr (2.13736 nm) / SiO2 (67.0762 
nm) / Cr (2.41051 nm) / SiO2 (30.57438 nm) / Cu 
(>100 nm). This specific configuration exhibits an 
impressive absorption value of 0.996534 and an 
emission of 0.996534, demonstrating near-ideal 
characteristics. The absorber behaves as a cav-
ity with the right thickness, matching the optimal 
conditions for resonating the selective solar wave-
length through the Fabry-Perot phenomenon.

This result offers a promising prototype 
for practical implementation using the Physi-
cal Vapor Deposition (PVD) method, especially 
considering the method’s capability to achieve 
minimal thickness values. However, it intro-
duces the challenges associated with manufac-
turing an ultra-thin film nano Cr layer with a 
thickness of approximately 2 nm. Additionally, 

the optical properties of the ultra-thin Cr layer 
from the bulk exhibit dependence on thickness, 
given its thickness is smaller than its electron 
mean free path.

This work aligns with the predictive effec-
tiveness of artificial intelligence algorithms, 
showcasing their potential in achieving nanotech-
nological advancements. The goal was to develop 
a sustainable solution for the photoconversion 
of solar energy. The increased efficiency derived 
from the obtained findings translates to a height-
ened capacity for power generation from avail-
able sunlight, enhancing the viability and com-
petitiveness of CSP technologies.

The broad applications across different sec-
tors, including electricity generation, solar de-
salination, and solar hydrogen production, under-
score the versatility and practical implications of 
the presented research. By addressing challenges 
and emphasizing practical applications, this study 
contributes to the ongoing efforts in advancing 
sustainable solutions for solar energy.
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