PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Cross-dating tree-ring series of living European beech by isochronic weather records

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of the study is to facilitate cross-dating of sensitive tree-ring series from living European beech (Fagus sylvatica L.) trees in the absence of a regional chronology. The main idea lies in the preliminary dating of marker rings or ring patterns visually identified on the wood (before the ring-width measurements), which is independently validated through a moving correlation between a tentative reference chronology and instrumental climate records (after the ring-width measurements). Following the detection of low moving correlations, potentially misdated segments or series are re-examined and a new tentative reference chronology is constructed. The process is repeated as long as a higher correlation with climate is obtainable. The applicability of this method was investigated on three difficult-to-date sets of tree-ring series of beech trees which were growing at temperature- or precipitation-sensitive locations in under-canopy or canopy positions. A good ability of the combined method for the cross-dating was practiced on datasets almost impossible to cross-date by commonly used approaches. Highlighting the actual correlation of ring widths with climate in tree-ring series makes the cross-dating process more independent from human decisions, so the com-bined cross-dating has the potential to improve the reliability of various dendrochronological studies.
Wydawca
Czasopismo
Rocznik
Strony
48--58
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Institute of Forest Ecology, Slovak Academy of Science, Ľudovíta Štúra 2, 960 53 Zvolen, Slovak Republic
autor
  • Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovak Republic
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, 165 21 Prague 6 - Suchdol, Czech Republic
autor
  • National Forest Centre, T.G. Masaryka 22, 960 92 Zvolen, Slovak Republic
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, 165 21 Prague 6 - Suchdol, Czech Republic
autor
  • Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovak Republic
autor
  • Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovak Republic
autor
  • National Forest Centre, T.G. Masaryka 22, 960 92 Zvolen, Slovak Republic
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, 165 21 Prague 6 - Suchdol, Czech Republic
autor
  • Institute of Forest Ecology, Slovak Academy of Science, Ľudovíta Štúra 2, 960 53 Zvolen, Slovak Republic
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, 165 21 Prague 6 - Suchdol, Czech Republic
Bibliografia
  • 1. Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson R, Carrer M, Grabner M, Tegel W, Levanic T, Panayotov M, Urbinati C, Bouriaud O, Ciais P and Frank D, 2013. Site- and species-specific responses of forest growth to climate across the European continent.Global Ecology and Biogeography 22(6): 706–717, DOI 10.1111/geb.12023.
  • 2. Bošeľa M, Petráš R, Sitková Z, Priwitzer T, Pajtík J, Hlavatá H, Sedmák R and Tobin B, 2014a. Possible causes of the recent rapid increase in the radial increment of Silver fir in the Western Carpathians. Environmental Pollution 184: 211–221, DOI 10.1016/j.envpol.2013.08.036.
  • 3. Bošeľa M, Sedmák R, Sedmáková D, Marušák R and Kulla L, 2014b. Temporal shifts of climate-growth relationships of Norway spruce as an indicator of health decline in the Beskids, Slovakia. Forest Ecology and Management 325: 108–117, DOI 10.1016/j.foreco.2014.03.055.
  • 4. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG and Vaganov EA, 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391: 678–682, DOI 10.1038/35596.
  • 5. Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T and Esper J, 2007. Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiology 27(5): 689–702, DOI 10.1093/treephys/27.5.689.
  • 6. Büntgen U, Brázdil R, Frank D and Esper J, 2009. Three centuries of Slovakian drought dynamics. Climate Dynamics 35(2–3): 315–329, DOI 10.1007/s00382-009-0563-2.
  • 7. Büntgen U, Franke J, Frank D, Wilson R, González-Rouco F and Esper J, 2010. Assessing the spatial signature of European climate reconstructions. Climate Research 41: 125–130, DOI 10.3354/cr00848.
  • 8. Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner KU, Wanner H, Luterbacher J and Esper J, 2011. 2500 years of European climate variability and human susceptibility. Science 331(6017): 578–582, DOI 10.1126/science.1197175.
  • 9. Büntgen U, Kyncl T, Ginzler C, Jacks DS, Esper J, Tegel W, Heussner KU and Kyncl J, 2013. Filling the Eastern European gap in millennium long temperature reconstructions. Proceedings of the National Academy of Sciences of the United States of America110(5): 1773–1778, DOI 10.1073/pnas.1211485110.
  • 10. Castagneri D, Nola P, Motta R and Carrer M, 2014. Summer climate variability over the last 250years differently affected tree species radial growth in a mesic Fagus-Abies-Picea old-growth forest. Forest Ecology and Management 320: 21–29, DOI 10.1016/j.foreco.2014.02.023.
  • 11. Climexp.KNMI, 2014.
  • 12. Cook ER and Kariukstis LA (eds.), 1990. Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic Publishers, Dordrecht: 394pp.
  • 13. DeRose JR and Gardner RS, 2010. Technique to improve visualization of elusive tree-ring boundaries in aspen (Populus tremuloides). Tree-Ring Research 66(1): 75–78, DOI 10.3959/2009-11.1.
  • 14. Di Filippo A, Biondi F, Čufar K, de Luis M, Grabner M, Maugeri M, Saba EP, Schironel B and Piovesan G, 2007. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography 34(11): 1873–1892, DOI 10.1111/j.1365-2699.2007.01747.x.
  • 15. Dittmar C, Zech W and Elling W, 2003. Growth variations of common beech (Fagus sylvatica L.) under different climatic and environ-mental conditions in Europe: a dendroecological study. Forest Ecology and Management 173: 63–78, DOI 10.1016/S0378-1127(01)00816-7.
  • 16. Esper J, Büntgen U, Luterbacher J and Krusic PJ, 2013. Testing the hypothesis of post-volcanic missing rings in temperature sensitive dendrochronological data. Dendrochronologia 31(3): 216–222. DOI 10.1016/j.dendro.2012.11.002.
  • 17. Fritts HC, 1976. Tree Rings and Climate. Academic Press, London: 567pp.
  • 18. Fritts HC and Swetnam TW, 1989. Dendroecology: A tool for evaluating variations in past and present forest environments. Advances in Ecological Research 19: 111–188.
  • 19. Gärtner H and Schweingruber FH, 2013. Microscopic Preparation Techniques for Plant Stem Analysis .WSL Birmensdorf, Switzerland: 78pp.
  • 20. Gärtner H, Lucchinetti S and Schweingruber FH, 2014. New perspectives for wood anatomical analysis in dendrosciences: The GSL1-microtome. Dendrochronologia 32(1): 47–51, DOI 10.1016/j.dendro.2013.07.002.
  • 21. Gedalof ZE and Berg AA, 2010. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Global Biogeochemical Cycles 24(3): GB3027, DOI 10.1029/2009GB003699.
  • 22. Grissino-Mayer HD, 2001. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57: 205–221.
  • 23. Hantemirov RM, Gorlanova LA and Shiyatov SG, 2004. Extreme temperature events in summer in northwest Siberia since AD 742 inferred from tree rings. Palaeogeography, Palaeoclimatology, Palaeoecology 209(1): 155–164.
  • 24. Harris I, Jones PD, Osborn TJ and Lister DH, 2014. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology 34: 623–642. DOI 10.1002/joc.3711.
  • 25. Hartl-Meier C, Dittmar C, Zang C and Rothe A, 2014. Mountain forest growth response to climate change in the Northern Limestone Alps. Trees 28(3): 819–829, DOI 10.1007/s00468-014-0994-1.
  • 26. Holmes LR, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.
  • 27. Janíček R, 1994. User reference DAS (Dendrochronological analysis system): 53pp.
  • 28. Ježík M, Blaženec M, Střelcová K and Ditmarová Ľ, 2011. The impact of the 2003–2008 weather variability on intra-annual stem diameer changes of beech trees at a submontane site in central Slovakia. Dendrochronologia 29(4): 227–235. DOI 10.1016/j.dendro.2011.01.009.
  • 29. Leal S, Eamus D, Grabner M, Wimmer R and Cherubini P, 2008. Tree rings of Pinusnigra from the Vienna basin region (Austria) show evidence of change in climatic sensitivity in the late 20th century. Canadian Journal of Forest Research 38(4): 744–759, DOI 10.1139/X07-189.
  • 30. Lebourgeois F, Bréda N, Ulrich E and Granier A, 2005. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19: 385–401, DOI 10.1007/s00468-004-0397-9.
  • 31. Lorimer CG, Dahir SE and Singer MT, 1999. Frequency of partial and missing rings in Acer saccharum in relation to canopy position and growth rate. Plant Ecology 143: 189–202, DOI 10.1023/A:1009847819158.
  • 32. Maxwell RS, Wixom JA and Hessl AE, 2011. A comparison of two techniques for measuring and crossdating tree rings. Dendrochronologia 29(4): 237–243, DOI 10.1016/j.dendro.2010.12.002.
  • 33. Nehrbass-Ahles C, Babst F, Klesse S, Nötzli M, Bouriaud O, Neukom R, Dobbertin M and Frank D, 2014. The influence of sampling design on tree-ring-based quantification of forest growth. Global Change Biology 20(9): 2867–2885, DOI 10.1111/gcb.12599.
  • 34. Popa I and Kern Z, 2009. Long-term summer temperature reconstruction inferred from tree-ring records from the Eastern Carpathians. Climate Dynamics 32: 1107–1117, DOI 10.1007/s00382-008-0439-x.
  • 35. Rinn F, 2003. TSAP-Win. Time series analysis and presentation for dendrochronology and related applications. RINNTECH, Heidelberg.
  • 36. Schweingruber FH, 1983. Der Jahrring. Standort, Methodik, Zeit und Klima in der Dendrochronologie. (Tree-ring, site, methodology, time and climate in dendrochronology). Haupt, Bern: 234pp.
  • 37. Schweingruber FH, 1988. Tree Rings: Basics and Applications of Dendrochronology. D. Reidel Publishing Co., Dodrecht, the Netherlands: 276pp.
  • 38. Speer JH, 2010. Fundamentals of tree-ring research. University of Arizona Press, Tucson: 368pp.
  • 39. Wigley TML, Briffa KR and Jones PD, 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23: 201–213, DOI 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2.
  • 40. Yamaguchi DK, 1991. A simple method for crossdating increment cores from living trees. Canadian Journal of Forest Research 21: 414–416, DOI 10.1139/x91-053.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a63ea96e-4b5e-49da-a36a-77b0f8014e06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.