PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Axisymmetric thermoelastic analysis of long cylinder made of FGM reinforced by aluminum and silicone carbide using DQM

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the thermoelastic stress analysis of a thick-walled cylinder made of functionally graded material (FGM) is investigated. The FGM is assumed a mixture of aluminum and silicone carbide in which the effective material properties are estimated through modified mixture law. Temperature distribution is obtained using the solution of one-dimensional heat transfer equation with the assumption of boundary condition. Solution procedure is developed based on the differential quadrature method. Effect of FGM characteristics such as percentages of ceramic particles at the outer side of cylinder's wall, and power of ceramic particles distribution, on the distribution of stress components, and temperature along the thickness are presented. In addition, stress distribution arising from the thermomechanical loading on structure, along the thickness are is investigated. Verification of the method, formulation and solution procedure is confirmed through comparison with available results in literature.
Rocznik
Strony
art. no. e48, 2022
Opis fizyczny
Bibliogr. 58 poz., rys., wykr.
Twórcy
autor
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, 87317-51167 Kashan, Iran
autor
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, 87317-51167 Kashan, Iran
autor
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, 87317-51167 Kashan, Iran
autor
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, 87317-51167 Kashan, Iran
autor
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, 87317-51167 Kashan, Iran
Bibliografia
  • 1. Bever MB, Duwez PE. Gradients in composite materials. Mater Sci Eng. 1972;10:1–8.
  • 2. Lal R, Saini R. On radially symmetric vibrations of functionally graded non-uniform circular plate including non-linear temperature rise. Eur J Mech A Solids. 2019;77:103796.
  • 3. Yildirim S. Hydrogen elasticity solution of functionally-graded spheres, cylinders and disks. Int J Hydrogen Energy. 2020;45(41):22094–101.
  • 4. Xie Y, Meng X, Chang Y, Mao D, Yang Y, Xu Y, Huang YAmeliorating strength-ductility efficiency of graphene nanoplatelet-reinforced aluminum composites via deformation-driven metallurgy. Compos Sci Technol. 2021;109225. https://doi.org/10.1016/j.compscitech.2021.109225.
  • 5. Xiao G, Chen B, Li S, Zhuo X. Fatigue life analysis of aero-engine blades for abrasive belt grinding considering residual stress. Eng Fail Anal. 2022;131:105846. https://doi.org/10.1016/j.engfailanal.2021.105846.
  • 6. Li Y, Macdonald DD, Yang J, Qiu J, Wang S. Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics. Corros Sci. 2020;163:108280. https://doi.org/10.1016/j.corsci.2019.108280.
  • 7. Xu D, Liu Q, Qin Y. Analytical approach for crack identification of glass fiber reinforced polymer–sea sand concrete composite structures based on strain dissipations. Struct Health Monit. 2021. https://doi.org/10.1177/1475921720974290.
  • 8. Yang, Y. Temperature-dependent thermoelastic analysis of multi-dimensional functionally graded materials. PhD dissertation, University of Pittsburgh, 2016.
  • 9. Arefi M, Bidgoli EMR, Rabczuk T. Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT. Thin Walled Struct. 2019;142:444–59.
  • 10. Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials. Mater Sci Eng A. 2003;362(1–2):81–106.
  • 11. Praveen GN, Chin CD, Reddy JN. Thermoelastic analysis of functionally graded ceramic-metal cylinder. J Eng Mech. 1999;125(11):1259–67.
  • 12. Biner SB. Thermo-elastic analysis of functionally graded materials using Voronoi elements. Mater Sci Eng A. 2001;315(1–2):136–46.
  • 13. Bansal Y, Pindera M-J. Efficient reformulation of the thermoelastic higher-order theory for functionally graded materials. J Therm Stresses. 2003;26(11–12):1055–92.
  • 14. Vel SS, Batra RC. Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J. 2002;40(7):1421–33.
  • 15. Wu L, Jiang Z, Liu J. Thermoelastic stability of functionally graded cylindrical shells. Compos Struct. 2005;70(1):60–8.
  • 16. Hosseini Kordkheili SA, Naghdabadi R. Thermoelastic analysis of a functionally graded rotating disk. Compos Struct. 2007;79(4):508–16.
  • 17. Ruhi M, Angoshtari A, Naghdabadi R. Thermoelastic analysis of thick-walled finite-length cylinders of functionally graded materials. J Therm Stresses. 2005;28(4):391–408.
  • 18. Peng XL, Li XF. Thermoelastic analysis of a cylindrical vessel of functionally graded materials. Int J Press Vessels Pip. 2010;87(5):203–10.
  • 19. Goupee AJ, Vel SS. Transient multiscale thermoelastic analysis of functionally graded materials. Compos Struct. 2010;92(6):1372–90.
  • 20. Ozturk A, Gulgec M. Elastic–plastic stress analysis in a long functionally graded solid cylinder with fixed ends subjected to uniform heat generation. Int J Eng Sci. 2011;49(10):1047–61.
  • 21. Arefi M, Bidgoli EMR, Rabczuk T. Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST. Eur J Mech A Solids. 2019;77:103802.
  • 22. Arefi M, Rabczuk T. A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell. Compos B Eng. 2019;168(1):496–510.
  • 23. Alikarami S, Parvizi A. Elasto-plastic analysis and finite element simulation of thick-walled functionally graded cylinder subjected to combined pressure and thermal loading. Sci Eng Compos Mater. 2017;24(4):609–20.
  • 24. Pronina Y, Sedova O. Analytical solution for the lifetime of a spherical shell of arbitrary thickness under the pressure of corrosive environments: the effect of thermal and elastic stresses. J Appl Mech. 2021;88(6):061004.
  • 25. Sedova O, Pronina Y. The thermoelasticity problem for pressure vessels with protective coatings, operating under conditions of mechanochemical corrosion. Int J Eng Sci. 2022;170:103589.
  • 26. Trinh M-C, Kim S-E. Nonlinear thermomechanical behaviors of thin functionally graded sandwich shells with double curvature. Compos Struct. 2018;195:335–48.
  • 27. Ohmichi M, Noda N. Steady thermal stresses in functionally graded eccentric polygonal cylinder with circular hole. Arch Appl Mech. 2016;86(6):1163–77.
  • 28. Noda N, Sumi N, Ohmichi M. Analysis of transient plane thermal stresses in functionally graded orthotropic strip. J Therm Stresses. 2018;41(10–12):1225–43.
  • 29. Najibi A, Talebitooti R. Nonlinear transient thermo-elastic analysis of a 2D-FGM thick hollow finite length cylinder. Compos B Eng. 2017;111:211–27.
  • 30. Li Z, Huang D, Xu Y, Yan K. Nonlocal steady-state thermoelastic analysis of functionally graded materials by using peridynamic differential operator. Appl Math Model. 2020;93:294–313.
  • 31. Demirbas MD. Thermal stress analysis of functionally graded plates with temperature-dependent material properties using theory of elasticity. Compos B Eng. 2017;131:100–24.
  • 32. Afshin A, Nejad MZ, Dastani K. Transient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions. J Comput Appl Mech. 2017;48(1):15–26.
  • 33. Apatay TUNÇ, Eraslan AN. Analyses of elastic limit heat loads in thick walled tubes subjected to periodic surface temperatures: analytical treatment. Arch Mech. 2018;70(1):37–53.
  • 34. Zhang X, Tang Y, Zhang F, Lee C. A novel aluminum–graphite dual-ion battery. Adv Energy Mater. 2016;6(11):1502588.
  • 35. Tong X, Zhang F, Ji B, Sheng M, Tang Y. Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv Mater (Weinheim). 2016;28(45):9979–85.
  • 36. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem. 2018;10(6):667–72.
  • 37. Yu X, Sun Y, Zhao D, Wu S. A revised contact stiffness model of rough curved surfaces based on the length scale. Tribol Int. 2021. https://doi.org/10.1016/j.triboint.2021.107206.
  • 38. Huang H, Xue C, Zhang W, Guo M. Torsion design of CFRP-CFST columns using a data-driven optimization approach. Eng Struct. 2022. https://doi.org/10.1016/j.engstruct.2021.113479.
  • 39. Madan R, Bhowmick S, Saha K. A study based on stress-strain transfer ratio calculation using Halpin–Tsai and MROM material model for limit elastic analysis of metal matrix FG rotating disk. FME Trans. 2020;48(1):204–10.
  • 40. Suresh S, Mortensen A. Functionally graded metals and metal-ceramic composites: part 2. Thermomechanical behaviour. Int Mater Rev. 1997;42(3):85–116.
  • 41. Bhattacharyya M, Kapuria S, Kumar AN. On the stress to strain transfer ratio and elastic deflection behavior for Al/SiC functionally graded material. Mech Adv Mater Struct. 2007;14(4):295–302.
  • 42. Cho JR, Tinsley Oden J. Functionally graded material: a parametric study on thermal-stress characteristics using the Crank–Nicolson–Galerkin scheme. Comput Methods Appl Mech Eng. 2000;188(1–3):17–38.
  • 43. Khoshgoftar MJ, Ghorbanpour Arani A, Arefi M. Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material. Smart Mater Struct. 2009;18(11):115007.
  • 44. Mohammadimehr M, Rostami R, Arefi M. Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT. Steel Compos Struct. 2016;20(3):513–43.
  • 45. Arefi M. A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution. Latin Am J Solids Struct. 2014;11:2073–92.
  • 46. Lak M, Marji MF, Bafghi AY, Abdollahipour A. Analytical and numerical modeling of rock blasting operations using a two-dimensional elasto-dynamic Green’s function. Int J Rock Mech Min Sci. 2019;114:208–17.
  • 47. Abdollahipour A, Marji MF. A thermo-hydromechanical displacement discontinuity method to model fractures in high-pressure, high-temperature environments. Renew Energy. 2020;153:1488–503.
  • 48. Alizadeh R, Marji MF, Abdollahipour A, Sagand MP. Development of higher-order displacement discontinuity method to simulate fatigue crack growth in brittle materials. Eng Fract Mech. 2021. https://doi.org/10.1016/j.engfracmech.2021.108087.
  • 49. Zheng H, Sladek J, Sladek V, Wang SK, Wen PH. Hybrid mesh-less/displacement discontinuity method for FGM Reissner’s plate with cracks. Appl Math Model. 2021;90:1226–44.
  • 50. Haeri H, Marji MF. Simulating the crack propagation and cracks coalescence underneath TBM disc cutters. Arab J Geosci. 2016;9(2):124.
  • 51. Zhong W, Gao F, Ren Y. Generalized differential quadrature method for free vibration analysis of a rotating composite thin-walled shaft. Math Probl Eng. 2019;2019:1–16.
  • 52. Malik M, Civan F. A comparative study of differential quadrature and cubature methods vis-à-vis some conventional techniques in context of convection-diffusion-reaction problems. Chem Eng Sci. 1995;50(3):531–47.
  • 53. Akbari AR, Khorsand M. Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method. Int J Press Vessel Pip. 2011;88(5–7):167–80.
  • 54. Adineh M, Kadkhodayan M. Three-dimensional thermo-elastic analysis and dynamic response of a multi-directional functionally graded skew plate on elastic foundation. Compos B Eng. 2017;125:227–40.
  • 55. Akbari Alashti R, Khorsand M, Tarahhomi MH. Thermo-elastic analysis of a functionally graded spherical shell with piezoelectric layers by differential quadrature method. Sci Iran. 2013;20(1):109–19.
  • 56. Pradhan SC, Murmu T. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method. J Sound Vib. 2009;321(1–2):342–62.
  • 57. Kalali AT, Hadidi-Moud S. A semi-analytical approach to elastic-plastic stress analysis of FGM pressure vessels. J Solid Mech. 2013;5(1):63–73.
  • 58. Bagri A, Eslami MR. Generalized coupled thermoelasticity of disks based on the Lord-Shulman model. J Therm Stress. 2004;27(8):691–704.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a63d755f-baa5-4533-9f67-6b6781fcac07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.