Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a universal Excel-based cost estimation model for internal machinery relocation within manufacturing facilities. The objective of the study is to develop and validate a practical tool that enables accurate cost estimation and supports planning decisions in various industrial contexts. Although previous research has primarily focused on full-site relocations, internal repositioning of equipment has received limited academic attention despite its practical and financial relevance. The proposed model divides total relocation costs into three main components: equipment costs, labor costs and transport rental costs. To assist in decision-making and prioritization, the model applies the ABC classification method, grouping activities based on their financial impact. Selected principles of the OLESTR methodology, which integrates spatial and technological planning, are incorporated to enhance layout optimization. Developed in Microsoft Excel, the model was tested using a case study of a printing facility. Two layout variants were evaluated, each involving specific equipment relocation activities. Input parameters such as labor rates and equipment rental prices were defined as ranges to simulate real-world variability. The resulting variation in cost estimates across different simulation runs reflects the uncertain nature of industrial environments. The model offers a transparent, flexible and structured framework that supports industrial managers in evaluating layout alternatives, managing relocation budgets and minimizing disruption. Its adaptable design makes it applicable to a broad range of manufacturing settings and supports data-driven decision-making aimed at optimizing internal relocation processes and reducing associated costs.
Wydawca
Czasopismo
Rocznik
Tom
Strony
458--469
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- AGH University of Krakow Faculty of Management ul. Gramatyka 10, 30-067 Kraków, Poland
autor
- AGH University of Krakow Faculty of Management ul. Gramatyka 10, 30-067 Kraków, Poland
Bibliografia
- [1] T.Y. Tsai, F. Urmetzer. “A decisional framework for manu-facturing relocation: Consolidating and expanding the reshoring debate”. International Journal of Management Reviews, vol. 26, no. 2, pp. 254-284, Apr. 2024, DOI: 10.1111/ijmr.12352.
- [2] S. Urata and H. Kawai. “Intrafirm Technology Transfer by Japanese Manufacturing Firms in Asia” in The Role of Foreign Direct Investment in East Asian Economic Development, 1st ed., vol. 9. T. Ito and A. O. Krueger, Chicago: University of Chicago Press, 2000, pp. 49-77.
- [3] M. Johansson, “International manufacturing relocation – the phenomenon of backshoring,” Lund University, 2021.
- [4] X. Zhang, Y. Zong, R. Das, S. Joshi, A. Alzu’Bi, N. Nagarur. “Manufacturing Plant Location Selection: A Case Study with Resilient Strategy Using AHP”. Proceedings of the 10th Annual World Conference of the Society for Industrial and Systems Engineering, 2021, pp. 246-253.
- [5] J. Stentoft, K.A. Wickstrøm, A. Haug, and K. Philipsen, “Cost-driven motives to relocate manufacturing abroad among small- and medium-sized manufacturers: The influence of Industry 4.0,” Journal of Manufacturing Technology Management, vol. 32, no. 3, pp. 646-666, 2021. DOI: 10.1108/JMTM-07-2019-0283.
- [6] K.S. Sengottaiyan, M. S. Jasrotia. “Relocation of Manufacturing Lines – A Structured Approach for Success”. International Journal of Science and Research, vol. 13, no. 6, Jun. 2024, DOI: 10.21275/SR24615221557.
- [7] J.F. Lampón. “The impact of uncertainty on production relocation: Implications from a regional perspective”. Papers in Regional Science, vol. 99, pp. 427-446, Jun. 2020, DOI: 10.1111/pirs.12493.
- [8] S.S. Malladi, A.L. Erera, C.C. White. “Managing mobile production-inventory systems influenced by a modulation process”. Annals of Operations Research, vol. 304, pp. 299-330, Jul. 2021, DOI: 10.1007/s10479-021-04193-y.
- [9] B. Sundarakani, V. Pereira, A. Ishizaka. “Robust facility location decisions for resilient sustainable supply chain performance in the face of disruptions.” The International Journal of Logistics Management, 32(2), pp. 357-385, 2021, DOI:10.1108/IJLM-12-2019-0333.
- [10] E. R. Zúñiga, M.U. Moris, A. Syberfeldt, M. Fathi, J.C. Rubio-Romero. “A Simulation-Based Optimization Methodology for Facility Layout Design in Manufacturing”. IEEE Access, vol. 8, pp. 163818 – 163828, Sep. 2020, DOI: 10.1109/ACCESS.2020.3021753.
- [11] P. Burggräf, T. Adlon, V. Hahn, and T. Schulz-Isenbeck, “Fields of action towards automated facility layout design and optimization in factory planning – A systematic literature review,” CIRP Journal of Manufacturing Science and Technology, vol. 35, pp. 864-871, 2021. DOI:10.1016/j.cirpj.2021.09.013.
- [12] H. Choi, S. Yu, D. Lee, S.D. Noh, S. Ji, H. Kim, H. Yoon, M. Kwon, J. Han. “Optimization of the Factory Layout and Production Flow Using Production-Simulation-Based Rein-forcement Learning”, Machines, vol. 12, art. 390, pp. 1-22, Jun. 2024, DOI: 10.3390/machines12060390.
- [13] M. Fadhli, J.A.S. ZS, and Y.C. Winursito, “An analysis of machine maintenance system using preventive maintenance method with Always Better Control (ABC) classification and modular design,” Information Technology Engineering Journals (ITEJ), vol. 10, no. 1, pp. 54-64, 2025. DOI:10.24235/itej.v10i1.204.
- [14] M. Klar, P. Schworm, X. Wu, P. Simon, M. Glatt, B. Ravani, J.C. Aurich. “Transferable multi-objective factory layout planning using simulation-based deep reinforcement learning”. Journal of Manufacturing Systems, vol. 74, pp. 487-511, Jun. 2024, DOI: 10.1016/j.jmsy.2024.04.007.
- [15] Aslan, G. Vasantha, H. El-Raoui, J. Quigley, J. Hanson, J. Corney, A. Sherlock. “Smarter facility layout design: lever-aging worker localisation data to minimise travel time and alleviate congestion”. International Journal of Production Research, vol. 63, no. 4, pp. 1326-1353, 2025, DOI: 10.1080/00207543.2024.2374847.
- [16] M. Peron, G. Fragapane, F. Sgarbossa, and M. Kay. “Digital Facility Layout Planning”. Sustainability, vol. 12, pp. 1-17, Apr. 2020, DOI: 10.3390/su12083349.
- [17] B. Buchmeister, A. Javernik, R. Ojstersek, I. Palcic. „ Efficient Modification of the CRAFT Algorithm for Layout Optimisation”. Technical Journal, vol. 19, pp. 31-36, 2025, DOI: 10.31803/tg-20250222184108.
- [18] S. Kulturel-Konak, A. Konak. „Designing Facilities to Improve Flexibility: Zone-based Dynamic Facility Layout with Embedded Input/Output Points”. 16th International Mate-rial Handling Research Colloquium, pp. 1-7, Sep. 2023, DOI: 10.48550/arXiv.2309.02453.
- [19] P. Pérez-Gosende, J. Mula, and M. Díaz-Madroñero, “Facility layout planning: An extended literature review,” International Journal of Production Research, vol. 59, no. 12, pp. 3777-3816, 2021, DOI: 10.1080/00207543.2021.1897176.
- [20] M.S. Jasrotia and K. Sengottaiyan, “SLP (Systematic Layout Planning) for enhanced plant layout efficiency,” International Journal of Science and Research (IJSR), vol. 13, no. 6, pp. 820-827, 2024, DOI:10.21275/SR24610212609.
- [21] P. Pérez-Gosende, J. Mula, M. Díaz-Madroñero. „Facility layout planning. An extended literature review”. International Journal of Production Research, vol. 59, pp. 3777-3816, Mar. 2021, DOI: 10.1080/00207543.2021.1897176.
- [22] A.P. Lista, G.L. Tortorella, M. Bouzon, S. Mostafa, D. Romero. “Lean layout design: a case study applied to the textile industry”. Production, vol. 31, pp. 1-16, 2021, DOI: 10.1590/0103-6513.20210090.
- [23] B.Ó Longaigh, J. Noonan, A. Trubetskaya, O. McDermott. „Strategic facility & space planning utilising Design for Lean Six Sigma”, International Journal of Sustainable Engineering, vol. 16, no. 1, pp. 1-13, Nov. 2023, DOI: 10.1080/19397038.2023.2268639.
- [24] S.S. Salins, S.A.R. Zaidi, D. Deepak, H.K. Sachidananda. “Design of an improved layout for a steel processing facility using SLP and lean Manufacturing techniques”. International Journal on Interactive Design and Manufacturing, vol. 18, pp. 3827-3848, Apr. 2024, DOI: 10.1007/s12008-024-01828-9.
- [25] S. Kolahi-Randji, M.Y.N. Attari, and A. Ala, “Enhancement of the performance of multi-level and multi-commodity supply chains: A simulation approach,” Journal of Soft Computing and Decision Analytics, vol. 1, no. 1, pp. 18-38, 2023, DOI: 10.31181/jscda1120232.
- [26] M. Firouz, A. Oroojlooy-Jadid, and A. Asef-Vaziri, “Dynamic unequal area facility layout design under stochastic material flow, re-arrangement cost, and change period,” Computers & Industrial Engineering, vol. 203, p. 110971, 2025, DOI: 10.1016/j.cie.2025.110971.
- [27] M. Mansur, A.A. Ahmarofi, and A. Gui, “Designing the relayout of the production floor using integrated systematic layout planning (SLP) and simulation methods,” International Journal of Industrial Management, vol. 10, pp. 151-159, 2021, DOI: 10.15282/ijim.10.1.2021.6058.
- [28] Leicht Group, “Relocation of industrial machines and equipment.” Internet: https://leicht.group/en/uslugi/re-location-of-industrial-machines-and-equipment, Aug. 6, 2024 [Jun. 26, 2025].
- [29] O. Stryhunivska. “Integration of 3D visualization with methods of designing of manufacturing processes”, Doctoral dissertation, Krakow, Poland, AGH University of Science and Technology, Poland, 2019.
- [30] O. Stryhunivska, K. Gdowska, R. Rumin. „Implementation of synergetic planning for factory”. Scientific papers of Silesian University of Technology, no. 155, pp. 503-512, 2022, DOI: 10.29119/1641-3466.2022.155.32.
- [31] X. Liu, Cost Engineering Methods. In Cost Engineering Systems for Manufacturing Enterprises: Methods, Processes and Experience Reports from Practice. Singapore: Springer Nature Singapore, pp.45-83, 2025. DOI: 10.1007/978-981-96-5234-15.
- [32] N.M.M. Torre, V.A.P. Salomon, A.K. Florek-Paszkowska “Multi-criteria classification of spare parts in the steel industry”. Brazilian Journal of Operations & Production Management, 22(1), pp. 2344-2344, 2025, DOI: 10.14488/BJOPM.2344.2025.
- [33] E. Berniker, D.E. McNabb. “Applying Matrixed Pareto Analysis With Activity Based Costing For Operations And Cost Management”. Journal of Business and Management, vol 11, pp. 73-88, 2005, DOI: DOI:10.1504/JBM.2005.141131.
- [34] F. Yiğit and Ş. Esnaf, “A novel three-phase approach based on fuzzy C-Means and AHP for multi-criteria ABC inventory classification,” Journal of Intelligent Manufacturing, vol. 32, no. 6, pp. 1517-1528, 2021, DOI: 10.1007/s10845-020-01633-7.
- [35] E. Asker, F. Claesson. “Variables used in a warehouse real-location decision and an evaluation of an ABC-analysis sys-tem - A multiple-case study at a 3PL company”. Master of Science Thesis, Chalmers University of Technology, Göteborg, Sweden 2017.
- [36] A. Dubel, O. Stryhunivska. “Application of selection techniques of optimal planning and evaluation of a system layout in virtual environment”. Central and Eastern European Journal of Management and Economics, vol. 7, no. 2, pp. 47-62, Jun. 2019, DOI: 10.29015/ceejme.559.
- [37] M. Sequeira, A. Adlemo, P. Hilletofth. “A hybrid fuzzy!!!x‐;AHP!!!x‐;TOPSIS model for evaluation of manufacturing relocation decisions”. Operations Management Research, vol. 13, pp. 164-191, Jun. 2022, DOI: 10.1007/s12063-022-00284-6.
- [38] P.M. Deshpande. “Study of Cost Estimation Model For Plant Equipment: A Case Study of Water Treatment Plant”, Journal of Real Estate, Construction & Management, vol. 34, Jun. 2019, DOI: 10.1177/2977657020190205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a63d1be5-df16-4d58-8c95-c0ceae0752a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.