PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Support vector machine to criminal recidivism prediction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Internal security of the state is one of the prerequisites for sustainable development. To ensure the public safety and personal security of citizens, it is necessary to develop effective measures to reduce crime and prevent crime in the future. The starting point for the development and practical implementation of an effective strategy to combat crime or prevent certain crimes is criminological forecasting. Individual forecasting is aimed at determining the possibility of committing a crime (crimes) in the future by a certain person or group of persons. For risk assessment, the following are traditionally used machine learning models. Such models also provide qualitative assessments in the scientific prediction of the likelihood and possibilities of committing a repeat criminal offense. Knowledge gained from the application of machine learning algorithm, can provide justice authorities with anticipatory information that is essential for developing a general concept of combating crime. The development of applied models for crime analysis and forecasting can become a reliable tool to support decision-making in predicting likely criminal behavior in the future and ensuring the internal security of the state. In this paper, the results of the application are presented by the machine-learning algorithms Support Vector Machine (SVM) for assessment of the risk of recidivism of criminal offenses by persons who have already been convicted of such a crime in the past. The data set consisted of the 12,000 criminal defendants’ criminal profile information in Ukraine. The constructed classifier has a high precision (98.67%), recall (97.53%) and is qualitative (AUC is equal 0.981). The created SVM model can be applied to new data set to predict the risk of reoffending by convicted individuals in the future.
Rocznik
Strony
691--697
Opis fizyczny
Bibliogr. 24 poz., rys., wykr., tab.
Twórcy
  • West Ukrainian National University
  • University of Bielsko-Biala
  • West Ukrainian National University
  • West Ukrainian National University
Bibliografia
  • [1] H. Fair and R. Walmsley, “World prison brief,” Org.uk. https://www.icpr.org.uk/theme/prisons-and-use-imprisonment/world-prison-brief (accessed Jun. 29, 2023).
  • [2] Sample HubSpot User, “Risk map 2023 analysis: Russia and Ukraine,” Globalguardian.com. https://www.globalguardian.com/newsroom/risk-map-russia-ukraine (accessed Jun. 29, 2023).
  • [3] “Crime Rate by Country 2023,”Worldpopulationreview.com. https://worldpopulationreview.com/country-rankings/crime-rate-by-country (accessed Jun. 29, 2023).
  • [4] J. Zhang, “Research on the criminal recidivism prediction based on machine learning algorithm,” in Proceedings of the 2022 2nd International Conference on Business Administration and Data Science (BADS 2022), Dordrecht: Atlantis Press International BV, 2023, pp. 1297-1306.
  • [5] W. Safat, S. Asghar, and S. A. Gillani, “Empirical analysis for crime prediction and forecasting using machine learning and deep learning techniques,” IEEE Access, vol. 9, pp. 70080-70094, 2021, https://doi.org/10.1109/access.2021.3078117.
  • [6] O. Kovalchuk, M. Kasianchuk, M. Karpinski, and R. Shevchuk, “Decision-making supporting models concerning the internal security of the state,” Int. J. Electron. Telecommun., 2023, https://doi.org/10.24425/ijet.2023.144365.
  • [7] A. Sharma and U. K. Singh, “Modelling of Smart Risk Assessment Approach for Cloud Computing Environment using AI & supervised machine learning algorithms,” Global Transitions Proceedings, 2022, https://doi.org/10.1016/j.gltp.2022.03.030.
  • [8] N. Paltrinieri, L. Comfort, and G. Reniers, “Learning about risk: Machine learning for risk assessment,” Saf. Sci., vol. 118, pp. 475-486, 2019, https://doi.org/10.1016/j.ssci.2019.06.001.
  • [9] P. Chen, J. Kurland, and S. Shi, “Predicting repeat offenders with machine learning: A case study of Beijing theives and burglars,” in 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), IEEE, 2019.
  • [10] P. Saravanan, J. Selvaprabu, L. Arun Raj, A. Abdul Azeez Khan, and K. Javubar Sathick, “Survey on crime analysis and prediction using data mining and machine learning techniques,” in Lecture Notes in Electrical Engineering, Singapore: Springer Singapore, 2021, pp. 435-448.
  • [11] O. Kovalchuk, M. Karpinski, S. Banakh, M. Kasianchuk, R. Shevchuk, and N. Zagorodna, “Prediction machine learning models on propensity convicts to criminal recidivism,” Information (Basel), vol. 14, no. 3, p. 161, 2023, https://doi.org/10.3390/info14030161.
  • [12] M. Azizi, “An Efficient Remand Risk Assessment Tool based on Machine Learning Techniques,” https://harvest.usask.ca/bitstream/handle/10388/12421/AZIZI-THESIS-2019.pdf (accessed Jun. 29, 2023).
  • [13] S. W. Palocsay, P. Wang, and R. G. Brookshire, “Predicting criminal recidivism using neural networks,” Socioecon. Plann. Sci., vol. 34, no. 4, pp. 271-284, 2000, https://doi.org/10.1016/s0038-0121(00)00003-3.
  • [14] C. Wang, B. Han, B. Patel, and C. Rudin, “In pursuit of interpretable, fair and accurate machine learning for criminal recidivism prediction,” J. Quant. Criminol., vol. 39, no. 2, pp. 519-581, 2023, https://doi.org/10.1007/s10940-022-09545-w.
  • [15] S. Etzler, F. D. Schönbrodt, F. Pargent, R. Eher, and M. Rettenberger, “Machine learning and risk assessment: Random forest does not outperform logistic regression in the prediction of sexual recidivism,” Assessment, p. 10731911231164624, 2023, https://doi.org/10.1177/10731911231164624.
  • [16] S. Walczak, “Predicting crime and other uses of neural networks in police decision making,” Front. Psychol., vol. 12, p. 587943, 2021. https://doi.org/10.3389/fpsyg.2021.587943.
  • [17] D. Watts, H. Moulden, M. Mamak, C. Upfold, G. Chaimowitz, and F. Kapczinski, “Predicting offenses among individuals with psychiatric disorders - A machine learning approach,” J. Psychiatr. Res., vol. 138, pp. 146-154, 2021, https://doi.org/10.1016/j.jpsychires.2021.03.026.
  • [18] R. de la Cruz, O. Padilla, M. A. Valle, and G. A. Ruz, “Modeling recidivism through Bayesian regression models and deep neural networks,” Mathematics, vol. 9, no. 6, p. 639, 2021, https://doi.org/10.3390/math9060639.
  • [19] N. Chongmin, O. Gyeongseok, and P. Hyoungah, “Do machine learning methods outperform traditional statistical models in crime prediction? A comparison between logistic regression and neural networks,” The Korean Journal of Policy Studies, vol. 36, no. 1, pp. 1-13, 2021, https://doi.org/10.52372/kjps36101.
  • [20] F. Adesola, A. Azeta, A. Oni, A. E. Azeta, and G. Onwodi, “Violent crime hot-spots prediction using support vector machine algorithm,” Docplayer.net. https://docplayer.net/197281226-Violent-crime-hot-spots-prediction-using-support-vector-machine-algorithm.html (accessed Jun. 29, 2023).
  • [21] K. M. Berezka, O. Y. Kovalchuk, S. V. Banakh, S. V. Zlyvko, and R. Hrechaniuk, “A binary logistic regression model for support decision making in criminal justice,” Folia Oecon. Stetin., vol. 22, no. 1, pp. 1-17, 2022, https://doi.org/10.2478/foli-2022-0001.
  • [22] RapidMiner GmbH, “Home - RapidMiner documentation,” Rapidminer.com. https://docs.rapidminer.com (accessed Jul. 01, 2023).
  • [23] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, pp. 189-215, 2020, https://doi.org/10.1016/j.neucom.2019.10.118.
  • [24] F. R. Lumbanraja, E. Fitri, Ardiansyah, A. Junaidi, and R. Prabowo, “Abstract classification using Support Vector Machine algorithm (case study: Abstract in a Computer Science journal),” J. Phys. Conf. Ser., vol. 1751, no. 1, p. 012042, 2021, https://doi.org/10.1088/1742-6596/1751/1/012042.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6377590-f17f-4bb3-a069-e4743792fbfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.