PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Key preprocessing technology and its application for CBM AVO analysis

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hazards of amplitude versus offset (AVO) technique mostly applied in seismic explorations for predicting coalbed methane (CBM) content mainly derive from multi-stage amplitude modifications during seismic signal preprocessing. The modifications are undoubtedly necessitated by improving high signal-to-noise ratio (SNR) and high resolution, and achieve high fidelity to some extent; and nevertheless lead to an unfavorable possibility to implement CBM AVO analysis. Similar to sand-stone reservoir with gas, AVO analysis preprocessing for CBM reservoir strictly abides by a relative amplitude preserved (RAP) principle and particularly emphasizes on preserving the evanescent class IV AVO anomaly. As for those indispensable dealings with linear noise attenuations, near-surface variety compensations and time/depth spatial imaging, the key technologies adapted to CBM AVO preprocessing should use radial trace (RT) filter, refined surface-consistent amplitude compensation (SCAC), and RAP Kirchhoff prestack time migration (PSTM). The theoretical analysis and one real 3D example in this paper demonstrate that three key technologies compliant to RAP principle in CBM AVO preprocessing can preserve the class IV AVO anomaly and benefit an operation of CBM AVO analysis and an improvement of CBM evaluation.
Czasopismo
Rocznik
Strony
1069--1079
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Chinese Academy of Geological Sciences, Beijing, People’s Republic of China
autor
  • Research Institute, BGP Inc, CNPC, Zhuozhou, People’s Republic of China
autor
  • Geomodulus Co. Ltd, Beijing, People’s Republic of China
autor
  • Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
autor
  • Chinese Academy of Geological Sciences, Beijing, People’s Republic of China
Bibliografia
  • 1. Antonio Ramos CB, Thomas LD (1997) 3D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs. Geophysics 62(6):1683–1695. doi: 10.1190/1.1444268
  • 2. Andrew A, Taylor R (2016) Valuable lessons from acquiring 3D seismic for coal-seam gas. Lead Edge 35(1):58–63. doi: 10.1190/tle35010058.1
  • 3. Charles CM, Timothy HK, Arthur BW (1996) The impact of migration on AVO. Geophysics 61(6):1603–1615. doi: 10.1190/1.1444079
  • 4. Chen XP, Huo QM, Lin JD et al (2013) The inverse correlations between methane content and elastic parameters of coal-bed methane reservoirs. Geophysics 78(4):D237–D248. doi: 10.1190/geo2012-0352.1
  • 5. Chen XP, Huo QM, Lin JD et al (2014) Theory of CBM AVO, Part 1: characteristics of anomaly. Geophysics 79(2):1–11. doi: 10.1190/geo2013-0195.1
  • 6. Gochioco LM (1991) Tuning effect and interference reflections from thin beds and coal seams. Geophysics 56(8):1288–1295. doi: 10.1190/1.1443151
  • 7. Gochioco LM (2002) Recently role of geophysics in U.S. coal and CBM development. Lead Edge 21(5):452–455. doi: 10.1190/1.1885502
  • 8. Henley DC (2003) Coherent noise attenuation in the radial trace domain. Geophysics 68(4):1408–1416. doi: 10.1190/1.1598134
  • 9. Hong F, Bancroft JC (2006) AVO principles, processing and inversion. CREWES Research Report-Volume 18:1–19
  • 10. Hu XG, Shang XM, Shi LG et al (2002) AVO processing technique based on prestack time migration data. Geophysical prospecting for petroleum (in Chinese) 41(3):343–346
  • 11. Jason MC, Lawton Don C, Lu HX, Hall Kevin (2007) Time-lapse AVO modeling for enhanced coalbed methane production. SEG technical program expanded abstracts 2007:274–278. doi: 10.1190/1.2792425
  • 12. Liu ZW, Wang YC (2013) A joint high-resolution processing method and its application for thin inter-beds. Petroleum Sci 10(2):195–204. doi: 10.1007/s12182-013-0267-4
  • 13. Liu ZW, Wang YC, Zhao HX et al (2013) High-resolution processing methods of thin inter-beds imaging. Chinese J Geophys (in Chinese) 56(4):1350–1359. doi: 10.6038/cjg20130429
  • 14. Ostrander WJ (1984) Plane-wave reflection coefficient for gas sands at non-normal angles of incidence. Geophysics 49(10):1637–1648. doi: 10.1190/1.1441571
  • 15. Peng SP, Chen HJ, Yang RZ et al (2006) Factors facilitating or limiting the use of AVO for coalbed methane. Geophysics 71(4):C49–C56. doi: 10.1190/1.2217137
  • 16. Rutherford SR, Williams RH (1989) Amplitude-versus-offset variation in gas sands. Geophysics 54(6):680–688. doi: 10.1190/1.1442696
  • 17. Shuey RT (1985) a simplification of the Zoeppritz equations. Geophysics 50(4):609–614. doi: 10.1190/1.1441936
  • 18. Wu HB, Dong SH et al (2016) Brittleness index calculation and evaluation for CBM reservoirs based on AVO simultaneous inversion. J Appl Geophys 134:191–198. doi: 10.1016/j.jappgeo.2016.09.010
  • 19. Zhang Y (2006) the theory of true amplitude one-way wave equation migration. Chinese J. Geophysics (in Chinese) 49(5):1410–1430. doi: 10.1002/cjg2.951
  • 20. Zuber Michael D (1998) Production characteristics and reservoir analysis of coalbed methane reservoirs. Int J Coal Geol 38(1–2):27–45. doi: 10.1016/S0166-5162(98)00031-7
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a633df92-c365-40a1-8a72-10c581968b19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.