PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on separation of fine-particle ilmenite and mechanism using flocculation flotation with sodium oleate and polyacrylamide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, sodium oleate, polyacrylamide, soluble starch and sodium carboxymethyl cellulose were used as flocculants to study the flocculation and sedimentation behavior of microfine ilmenite. Sedimentation test shows that sodium oleate and polyacrylamide have good flocculation effect on ultrafine ilmenite. The flocculation rate of ilmenite can be further improved by the combination of sodium oleate and polyacrylamide. It was found that both flocculants could generate chemical adsorption with ilmenite surface, and they all react with Fe3+ on ilmenite surface. However, sodium oleate reacts with Fe3+ to form a water-insoluble iron oleate precipitate which coats the surface of the ilmenite and hinders the action of polyacrylamide and the remaining Fe3+. This problem can be avoided by adding polyacrylamide followed by sodium oleate, and the flotation recovery can be increased significantly.
Rocznik
Strony
161--172
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
  • Sichuan Engineering Laboratory of Non-Metallic Mineral Powder Modification and High-Value Utilization, Southwest University of Science and Technology, Mianyang 621010, China
  • Key Laboratory of Sichuan Province for Comprehensive Utilization of Vanadium and Titanium Resources, Panzhihua, 61700, China
  • Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Miangyang 621010, China
autor
  • State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (Pangang Group Panzhihua Iron & Steel Research Institute Co. Ltd.) Panzhihua, 61700, China
  • Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, China
autor
  • School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (Pangang Group Panzhihua Iron & Steel Research Institute Co. Ltd.) Panzhihua, 61700, China
  • Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, China
  • State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (Pangang Group Panzhihua Iron & Steel Research Institute Co. Ltd.) Panzhihua, 61700, China
  • Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, China
autor
  • School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
Bibliografia
  • BERMAN, R.G., ARANOVICH, L.Y., 1996. Optimized standard state and solution properties of minerals. Contributions to Mineralogy and Petrology 126(1-2), 1-24.
  • CASTRO, S., LASKOWSKI, J.S., 2015. Depressing effect of flocculants on molybdenite flotation. Minerals Engineering 74, 13-19.
  • CHITICHOTPANYA, P., INPRASIT, T., CHITICHOTPANYA, C., 2019. In vitro assessment of antibacterial potential and mechanical properties of Ag-TiO2/WPU on medical cotton optimized with response surface methodology. Journal of Natura Fibers 16(1), 88-99.
  • CHEN, P., HOU, P., ZHAI, J., SUN, W., 2019. A novel method for the comprehensive utilization of iron and titanium resources from a refractory ore. Separation and Purification Technology 226, 1-7.
  • CHEN, Y.C., NAKATA, K., 2009. Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys. Materials & Design 30(3), 469-474.
  • DOBBINS, M., DOMENICO, J., DUNN, P., 2007. A discussion of magnetic separation techniques for concentrating ilmenite and chromite ore. The 6th International Heavy Minerals Conference “Back to Basics”, The Southern African Institute of Mining and Metallurgy.: 197-204.
  • DRZYMALA, J., FUERSTENAU, D.W., 2014. Selective flocculation of hematite in quartz–hematite–ferric ion–polyacrylic acid system. Part 2. Effect of grinding and a hydrofluoric treatment on selectivity of flocculation. International Journal of Mineral Processing 129, 1-5.
  • FARLANA, S.H., HUDA, N., MAHMUD, M.A.P., LANG, C., 2018. Towards sustainable TiO2 production: An investigation of environmental impacts of ilmenite and rutile processing routes in Australia. Journal of Cleaner Production 196, 1016-1025.
  • FENG, B., LUO, X.P., WANG, J.Q., WANG, P.C., 2015. The flotation separation of scheelite from calcite using acidified sodium silicate as depressant. Minerals Engineering 80, 45-49.
  • FORBES E., 2011. Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques. International Journal of Mineral Processing 99(1-4), 1-10.
  • IRANNAJAD, M., MEHDILO, A., SALMANI, N.O., 2014. Influence of microwave irradiation on ilmenite flotation behavior in the presence of different gangue minerals. Separation and Purification Technology 132, 401-412.
  • LAPOINTE, M., BARBEAU, B., 2018. Selection of media for the design of ballasted flocculation processes. Water Research 147, 25-32.
  • LI, F., ZHONG, H, ZHAO, G, WANG, S., LIU, G., 2016. Adsorption of α-hydroxyoctyl phosphonic acid to ilmenite/water interface and its application in flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 490, 67-73.
  • LIU, J., ZENG, Y., MAJID, E., NGUYEN, A.V., WANG, Y., WEN, S.M., 2019. DFT simulation of Sspecies interaction with smithsonite (001) surface: effect of water molecule adsorption position. Results in Physics, DIO: 10.1016/j.rinp.2019.102575
  • LIU W., HU Y., SUN W., 2014. Separation of diaspore from bauxite by selective flocculation using hydrolyzed polyacrylamide. Journal of Central South University 21(4), 1470-1476.
  • LUSZCZKIEWICZ, A., LEKKI, J., LASKOWSKI, J.S., 1979. Flotability of ilmenite[C]//Treatment of Iron-Titanium Ores Round Table Seminar. Poland: PWN, Thirteenth International Mineral.
  • LV, J.F., ZHANG, H.P., TONG, X., FAN, C L., YANG, W.T., ZHENG, Y.X., 2017. Innovative methodology for recovering titanium and chromium from a raw ilmenite concentrate by magnetic separation after modifying magnetic properties. Journal of Hazardous Materials 325, 251-260.
  • NERADOVSKY, Y., ALEKSEEVA, S.A., CHERNOUSENKO, E.V., 2019. Mineralogy and process properties of Kolvitsky titanomagnetite ore. IOP Conference Series: Earth and Environmental Science 262, 12050.
  • OMRAN, M., FABRITIUS, T., ELMAHDY, A.M., ABDEL-KHALEK, N.A., 2015. Improvement of phosphorus removal from iron ore using combined microwave pretreatment and ultrasonic treatment. Separation and Purification Technology 156, 724-737.
  • PANDA, L., BISWAL, S.K., VENUGOPAL, R., MANDRE, N.R., 2018. Recovery of Ultra-Fine Iron Ore from Iron Ore Tailings. Transactions of the Indian Institute of Metals 71(2), 463-468.
  • SADEGHALVAAD, M., SABBAGHI, S., 2015. The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties. Powder Technology 272, 113-119.Processing Congress, 164-182.
  • SUBRAHMANYAM, T.V., FORSSBERG, K.S.E., 1990. Fine particles processing: shear-flocculation and carrier flotation—a review. International Journal of Mineral Processing 30(3-4), 265-286.
  • SUN, B.Q., 2006. Progress in China's Beneficiation Technology for Complex Refractory Iron Ore. Metal Mine 3, 11-13.
  • SUNG, N.W., CONNAL, L.A., FORBES, E, MOHANARANGAM, K., FRANKS, G.V., 2018. In situ study of aggregate sizes formed in chalcopyrite-quartz mixture using temperature-responsive polymers. Advanced Powder Technology 29(8), 1940-1949.
  • SUN, W., LONG, J., XU, Z., MASLIYAH, J.H., 2008. Study of Al (OH) 3− Polyacrylamide-Induced Pelleting Flocculation by Single Molecule Force Spectroscopy. Langmuir 24(24), 14015-14021.
  • TARTAGLIA J.M., LOEFFLER J.P., 1997. Turnlund T H. Polymer film for wrapping a stent structure: U.S. Patent 5,700,286, 12-23.
  • WANG J., ZHAO F.L., 1992. Crosslinking mechanism of multivalent metal ions with polyacrylamide. J. China Univ. Pet 16, 32-39.
  • WANG W., ZHU, Y., ZHANG, S., DENG, J., HUANG, Y., YAN, W., 2017. Flotation Behaviors of Perovskite, Titanaugite, and Magnesium Aluminate Spinel Using Octyl Hydroxamic Acid as the Collector. Minerals 7(8), 134.
  • WILLIAMS, D.L., GANTT G E., BEHL S., WILLIS M.J., 1997. Method for separating mixture of finely divided minerals: U.S. Patent 5,603,411, 2-18.
  • XIAO, J.H., ZHANG, Y.S., 2019. Recovering Cobalt and Sulfur in Low Grade Cobalt-Bearing V–Ti Magnetite Tailings Using Flotation Process. Processes 7, 536.
  • XIAO, J.H., ZHOU, L.L., 2019. Increasing Iron and Reducing Phosphorus Grades of Magnetic-Roasted High-Phosphorus Oolitic Iron Ore by Low-Intensity Magnetic Separation–Reverse Flotation. Processes 7, 388.
  • ZENG, J., CHEN, L., YANG, R., TONG, X., REN, P., ZHENG, Y., 2017. Centrifugal high gradient magnetic separation of fine ilmenite. International Journal of Mineral Processing 168, 48-54.
  • ZHAO, X., MENG, Q., YUAN, Z., ZHANG, Y., LI, L., 2019. Effect of sodium silicate on the magnetic separation of ilmenite from titanaugite by magnetite selective coating. Powder Technology 344, 233-241.
  • ZHU, Y G., ZHANG, G.F., FENG, Q.M., YAN, D.C., WANG, W.Q., 2011. Effect of surface dissolution on flotation separation of fine ilmenite from titanaugite. Transactions of Nonferrous Metals Society of China 21(5), 1149-1154.
  • ZOUBOULIS, A.I., AVRANAS, A., 2000. Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 172(1), 153-161.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a632ed8c-9454-41e0-91a5-f71c718988d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.