PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The selection of Gas Turbine Air Bottoming Cycle for Polish compressor stations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gas turbines are one of the basic technologies used to produce electricity and power working machinery. The popularity of the technology results from its advantages, the most important of which are: the fast start-up, high efficiency, low pollutant emissions, the short time needed for the installation to be constructed and a reasonable size. Gas turbines are becoming increasingly important in new power installations. An increase in the efficiency of energy systems can be achieved by development of combined cycles. Examples of high efficiency cycles are combined cycle power plants (CCPP) and gas turbine air bottoming cycles (GT-ABC), which are a combination of a gas turbine and air turbine cycle coupled by means of a heat exchanger referred to as the Air Heat Exchanger (AHX). The main feature of the GT (as well as GT-ABC) is a low water consumption. For this reason, it can be used in gas transport and storage systems. The construction of this type of systems may turn out to be energy-effective due to the advancement in flow machinery construction, especially in the field of improvement to blade profiles and sealing. The paper presents an application of gas-air systems with example configurations. Three technological structures are taken into consideration – a simple system of the ABC, an ABC with air one intercooler and advanced cycle with two intercooler. In order to improve the efficiency of air turbine installations, it is necessary to employ more complex system configurations.
Rocznik
Strony
67--77
Opis fizyczny
Bibliogr. 28 poz., tys., tab., wykr.
Twórcy
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Poland
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Poland
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Poland
Bibliografia
  • [1] M. Korobitsyn, New and advanced energy conversion technologies. Analysis of cogeneration, combined and integrated cycles, Amsterdam, 1998.
  • [2] L. Kambanis, Analysis and modeling of power transmitting systems for advanced marine vehicles, Massachusetts Institute of Technology, 1995.
  • [3] W. Farell (June 1998).
  • [4] K. Botros, M. de Boer, H. Fletcher, Thermodynamics, environmental and economic assessment of crgt for heat recovery in remote compressor station applications, in: ASME Paper, no. 97-GT-510, 1997.
  • [5] Anonymous, Low cost “air bottoming cycle” for gas turbines, in: Gas Turbine World, 1991.
  • [6] K. Weston, Dual gas turbine combined cycles, in: Proceedings of the 28th Intersociety Energy Conversion Engineering Conference EIECEC’93, Boston, 1993, pp. 955–958.
  • [7] F. Wicks, C. Wagner, Synthesis and evaluation of a combined cycle with no steam nor cooling water requirements, in: Proceedings of the 28th Intersociety Energy Conversion Engineering Conference EIECEC’93, Boston, 1993, pp. 105–110.
  • [8] M. Korobitsyn, Industrial applications of the air bottoming cycle, Energy Conversion and Management 43 (2002) 1311–1322.
  • [9] S. Yousef, H. Najjar, M. S. Zaamout, Performance analysis of gas turbine air-bottoming combined system, Energy Conversion and Management 37 (4) (1996) 399–403.
  • [10] M. Ghazikhani, M. Passandideh-Fard, M. Mousavi, Two new high-performance cycles for gas turbine with air bottoming, Energy 36 (2011) 294–304.
  • [11] O. Bolland, M. Forde, B. Hande, Air bottoming cycle: Use of gas turbine waste heat for power generaton, Journal of Engineering for Gas Turbines and Power 118 (2) (1996) 359–368.
  • [12] T. Chmielniak, D. Czaja, S. Lepszy, Wykorzystanie układów gazowo-powietrznych w ciepłownictwie, in: Rynek Ciepła 2011, Kaprint Lublin, 2011.
  • [13] T. Chmielniak, S. Lepszy, D. Czaja, Analysis of gas turbine air-bottoming-cycle and heat exchanger modelling, in: Proceedings of ECOS 2011, Novi Sad, Serbia, 2011.
  • [14] T. Chmielniak, S. Lepszy, D. Czaja, The use of airbottoming cycle as a heat source for the carbon dioxide capture installation of a coal fired power unit, Archives of Thermodynamic 32 (3) (2011) 89–101.
  • [15] J. Kaikko, L. Hunyadi, Air bottoming cycle for cogeneration of power, heat and cooling, Department of Energy Technology, Royal Insitute of Technology, Sweden.
  • [16] A. Tiwari, M. Islam, M. Khan, Thermodynamic analysis of combined cycle power plant, International Journal of Engineering Science and Technology 2 (4) (2012) 480– 491.
  • [17] M. Ghazikhani, H. Takdehghan, A. Moosavi Shayegh, Exergy analysis of gas turbine air bottomig combined cycle for different environment air temperature, in: Proceedings of 3rd International Energy, Exergy and Environment Symposium, 2007.
  • [18] T. Chmielniak, D. Czaja, S. Lepszy, Technical and economic analysis of the gas turbine air bottoming cycle, in: Proceedings of ASME Turbo Expo 2012, 2012.
  • [19] Transit gas pipeline system. URL http://www.europolgaz.com.pl/gazociag/tlocznie_gazu
  • [20] ABB Zamech Gazpetro Sp. Z o. o. Information brochure.
  • [21] K. Weston, Dual gas turbine combined cycles, in: Proceedings of the 28th Intersociety Energy Conversion Enginnering Conference IECEC’93, Vol. 1, Boston, USA, 1993, pp. 955–958.
  • [22] J. Szargut, Termodynamika techniczna, Wydawnictwo Politechniki Śląskiej, Gliwice, 2005.
  • [23] J. Gut, J. Pinto, Modeling of plate heat exchangers with generalized configuations, International Journal of Heat and Mass Trnasfer 46 (2003) 2571–2585.
  • [24] E. Kostowski, Przepływ ciepła, Wydawnictwo Politechniki Śląskiej, Gliwice, 2000.
  • [25] L. Zander, Z. Zander, Projektowanie płytowych wymienników ciepła, Instalacje Sanitarne 2 (7) (2003) 27–30.
  • [26] T. Chmielniak, S. Lepszy, Technical and economical analysis of gas-turbine systems with external combustion of the biomass, Archives of thermodynamics 28 (3) (2007) 67–80.
  • [27] T. Chmielniak, S. Lepszy, External combustion of biomass parallely coupled with the gas turbine unit, in: SYMKOM’05 Compressor and turbine flow systems – theory and application areas, Institute of Turbomachinery, Technical University of Łódź, Łódź, 2005.
  • [28] M. Liszka, G. Manfrida, A. Ziębik, Parametric study of hrsg in case of repowered industrial chp plant, Energy Conversion and Management 44 (2003) 995–1012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a62e8fd4-c8b9-458a-9162-8127d5011326
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.