Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Applying the scratch recognition method to regional gravity fields, we defend the ridge and edge coefficient for delineation of the deformation belts and the tectonic boundaries, which are able to recognize characteristic parameters about crustal scratches contained in regional gravity field. The tests on theoretical models prove that our method is correct and applicable. After performing this procedure to Bouguer gravity field of Chinese continent, we obtain the resulting scratch maps for locating the crustal deformation belts. Finally, by comparing the known deformation belts in Chinese continent with these crustal scratches, we try to find the correlation between these scratches and the Phanerozoic crustal deformation belts. Comparison between the calculated crustal scratches and different types of deformation belts in Chinese continent shows that the strong and long scratches are correlated with most of mature plate collisional zones, strike-slip fault zones and large crustal detachments in Phanerozoic, which have been found by Chinese geologists. Thus, the scratch procedure is meaningful for recognizing the crustal deformation belts and useful for locating tectonic boundaries. However, young and active deformation faults are usually correlated with rather weak scratches as they are not mature enough.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2001--2012
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- China Aero Geophysical & Remote Sensing Center for Natural Resources, Beijing 100083, China
autor
- Zhejiang University, Hangzhou 310058, China
autor
- iangsu Donghai Continental Deep Hole Crustal Activity, National Observation and Research Station, Jiangsu 222300, China
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
autor
- China Aero Geophysical & Remote Sensing Center for Natural Resources, Beijing 100083, China
autor
- China Aero Geophysical & Remote Sensing Center for Natural Resources, Beijing 100083, China
autor
- China Aero Geophysical & Remote Sensing Center for Natural Resources, Beijing 100083, China
autor
- China Aero Geophysical & Remote Sensing Center for Natural Resources, Beijing 100083, China
Bibliografia
- 1. Art R (1991) A pattern recognition approach to geophysical inversion using neural nets. Geophys J Int 105:629–648. https://doi.org/10.1111/j.1365-246X.1991.tb00801.x
- 2. Boschetti F, Therond V, Hornby P (2004) Feature removal and isolation in potential field data. Geophys J Int 159:833–841. https://doi.org/10.1111/j.1365-246X.2004.02293.x
- 3. Blakely RJ, Simpson RW (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51(7):1494–1498. https://doi.org/10.1190/1.1442197
- 4. Cheng YQ (1994) Introduction to regional geology of China. Geological pub House, Beijing (in Chinese)
- 5. Cevallos C, Kovac P, Lowe SJ (2013) Application of curvatures to airborne gravity gradient data in oil exploration. Geophysics 78(4):G81–G88. https://doi.org/10.1190/geo2012-0315.1
- 6. Cooper GRJ (2009) Balancing images of potential field data. Geophysics 74(3):17–20. https://doi.org/10.1190/1.3096615
- 7. Cooper GRJ (2010) Enhancing ridges in potential field data. Explor Geophys 41:170–173. https://doi.org/10.1071/EG09038
- 8. Cooper GRJ, Cowan DR (2008) Edge enhancement of potential-field data using normalized statistics. Geophysics 73(3):1–4. https://doi.org/10.1190/1.2837309
- 9. Fu LH, Yang WC (2018) Depth evaluation of magnetic sources by spectral moment analysis. Chin J Geophys 61(7):3044–3054. https://doi.org/10.6038/cjg2018L0493 (in Chinese, with English Abstr.)
- 10. Guspi F, Introcaso B (2000) A sparse spectrum technique for gridding and separating potential field anomalies. Geophysics 65:1154–1161. https://doi.org/10.1190/1.1885937
- 11. Harrison TM, Copeand P, Kidd WS, Yin A (1992) Raising tibet. Science 255:1663–1670. https://doi.org/10.1126/science.255.5052.1663
- 12. Hansen RO, deRidder E (2006) Linear feature analysis for aeromagnetic data. Geophysics 71(6):61–67. https://doi.org/10.1190/1.2357831
- 13. Huang YY (1984) The characterization of three-dimensional random surface topography. J ZhejiangUniv 2(18):138–148 ((in Chinese))
- 14. Huang YY (1985) Geometrical interpretation and graphical solution of second order spectrum moments and statistical invariants for random surface characterization. J ZhejiangUniv 6(19):143–153 ((in Chinese))
- 15. James DE (1989) Encyclopedia of solid Earth geophysics. Van Nostrand Reinhold Com, New York
- 16. Jolivet L and Hataf H-C (2001) Geodynamics. AA Balkema Pub., Lisse
- 17. Liu X, Li TD, Geng SF, You GQ (2012) Geotectonic division of china and some related problems. Geol Bull China 31(7):1024–1034 (in Chinese, with English Abstr.)
- 18. Liu X, You GQ (2015) Tectonic regional subdivision of china in the light of plate theory. Geol China 42(1):1–17 (in Chinese, with English Abstr.)
- 19. Longust-Higgins MS (1962) The statistical geometry of Random surfaces in hydrodynamic Instability, The Proc of the 13th Sympo on Applied Mathem Amer Math Soc, pp 105–143
- 20. Li CG, Dong S, Zhang GX (2000) Evaluation of the anisotropy of machined 3D surface Tomography. J Wear 237:211–216. https://doi.org/10.1016/S0043-1648(99)00327-0
- 21. Molnar P (1988) A review of geophysical constrain of the Himalaya on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications. Royal London Philos Trans, Ser A 326:33–88
- 22. Nayak PR (1973) Rough process model of surface roughness measurement. J Wear 26:165–174
- 23. Phillips JD, Hansen RO, Blakely RJ (2007) The use of curvature in potential-field interpretation. Explor Geophys 38:111–119. https://doi.org/10.1071/EG07014
- 24. Randolph J, Yang ZY, Chen Y, Vincent C (1992) Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present. J Geophys Res 97(B10):13953–13989
- 25. Sun YY, Yang WC (2014) Recognizing and extracting the information of crustal deformation belts from gravity field. Chin J Geophys 57(5):1578–1587. https://doi.org/10.6038/cjg20140521 (in Chinese, with English Abstr.)
- 26. Sun YY, Yang WC, Zeng XZ et al (2016) Edge enhancement of potential field data using spectral moments. Geophysics 81(1):G1–G11. https://doi.org/10.1190/geo2014-0430.1
- 27. Thomas TR (1982) Rough surfaces. Longman press, New York
- 28. Wan TF (2011) The Tectonics of China: data. Springer and High Education Press, London and New York, Maps and Evolution
- 29. Yang SZ, Wu Y, Xuan JP (2007) Time series analysis in engineering application. Huazhong University of Science and Technology Press, Wuhan (in Chinese)
- 30. Yang WC, Yu CQ (2014) Continental collision process reveled by worldwide comparison of crust and upper mantle structures (II). Geol Rev 60(3):486–502 (in Chinese, with English Abstr.)
- 31. Yang WC, Jin S, Zhang LL et al (2020) The three-dimensional resistivity structures of the lithosphere beneath the Qinghai-Tibet Plateau. Chin J Geophys 63(3):817–827. https://doi.org/10.6038/cjg2020N0197 (in Chinese, with English Abstr.)
- 32. Yuan XC, Hua JR (1996) Atlas of China. Geological Pub House, Beijing (in Chinese).
- 33. Zhang Y, Wang JH, Cao LP et al (2021) A study of the application of Curvelet transform to potential field signal extraction. Geophys Geochem Explor 45:84–94 (in Chinese, with English Abstr.)
- 34. Zhang ZH, Yao Y, Shi ZY, Wang H, Qiao ZK (2022) Deep learning for potential field edge detection. Chin J Geophys 65(5):1785–1801. https://doi.org/10.6038/cjg2022P0403 (in Chinese, with English Abstr.)
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a62e2bd3-85a6-4e5b-ae9b-ba9d9c1d6271