PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Numerical Method for the Design of the U-Shaped Segmental Tunnel Lining under the Impact of Earthquakes: A Case Study of a Tunnel in the Hanoi Metro System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Circular tunnels are usually encountered when excavation tunnel. However, the U-shaped tunnel lining is used a lot in practice because of it’s advantages. However, there are not many studies in the world to calculate and design for underground structures with U-shaped tunnel lining, especially in the case of tunnels being affected by earthquakes. This paper proposes a new numerical-HRM method approach for the analysis of U-shaped segmental tunnel lining under the impact of earthquakes. Hanoi is the capital of Vietnam, this is a big city with more than 8 million people. Hanoi is located between two major fault systems, the Red River fault system and the Son La-Dien Bien-Lai Chau fault system. Therefore, the Hanoi area is assessed as likely to be affected by earthquakes of magnitude Mw = 6.1 up to 6.5 Richter. The Hanoi metro system is constructed by TBM and the U-shaped segmental tunnel lining is also one of the types of tunnel lining considered for use in the construction of metro tunnels in Hanoi. The improved HRM method has been used to investigate the effect of joints in the tunnel lining from the Hanoi system metro under the impact of earthquakes is conducted considering from the results of the tunnel lining behavior in terms of bending moment (M), normal forces (N) and tunnel lining displacements (δn) in both cases: the U-shaped continuous tunnel lining and the U-shaped segmental tunnel lining.
Rocznik
Tom
Strony
305--320
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
autor
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
autor
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • 2 Saint Petersburg Mining University, Saint Petersburg, Russia Federation
Bibliografia
  • 1. Yin, L., Yang, W., 2000. Topology optimization for tunnel support in layered geological structures, International Journal for Numerical Methods in Engineering, 47(12): 1983-1996, DOI:10.1002/(SICI)1097-0207(20000430)47:123.3.CO;2-E.
  • 2. Barpi, F., Barbero, M., Peila, D., 2011. Numerical modelling of ground-tunnel support interaction
  • using beddedbeam-spring model with fuzzy parameters. Gospodarka Surowcami Mineralnymi, 27: 71-87.
  • 3. Oreste, P.P., 2007. A numerical approach to the hyperstatic reaction method for the dimenshioning of tunnel supports. Tunnelling and Underground space technology, 22: 185-205, DOI: 10.1016/j.tust.2006.05.002.
  • 4. Oreste, P., Spagnoli, G., Ramos, C.A.L., Sebille, L., 2018. The hyperstatic reaction method for the analysis of the spraryed concrete linings behavior in tunneling. Geotech. Geol. Eng, 36: 2143-2169, DOI: 10.1007/s10706-018-0454-6.
  • 5. Do, N.A., Dias, D., Oreste, P.P., Djeran-Maigre, I., 2014. The behaviour of the segmental tunnel lining studied by the Hyperstatic Reaction Method. European Journal of Environmental and Civil Engineering, 18(4): 489-510, https://doi.org/10.1080/19648189.2013.872583.
  • 6. Do, N.A., Dias, D., Oreste, P.P., Djeran-Maigre, I., 2014. 2D tunnel numerical investigation - the influence of the simplified excavation method on tunnel behaviour. Geotechnical and Geological Engineering, 32(1): 43-58, https://doi.org/10.1007/s10706-013-9690-y.
  • 7. Do, N.A., Dias, D., Oreste, P.P., Djeran-Maigre, I., 2014. A new numerical approach to the Hyperstatic Reaction Method for segmental tunnel linings. International Journal for Numerical and Analytical Methods in Geomechanics, 38(15): 1617-1632, DOI: 10.1002/nag.2277.
  • 8. Nguyen, T.C, Gospodarikov, A.P., 2020. Hyperstatic reaction method for calculations of tunnels with horseshoe shaped cross-section under the impact of earthquakes. Earthquake Engineering and Engineering Vibration, 19(1): 179-188, DOI: 10.1007/s11803-020-0555-0.
  • 9. Du, D., Daniel, D., Do, N.A., Vo, T.H., 2020. U-shaped tunnel lining design using the Hyperstatic Reaction Method– Influence of the invert. Soil and Foundations, 60(3): 592-607, DOI: 10.1016/j.sandf.2020.02.004.
  • 10. Duddeck, H., Erdmann, J., 1982. Structural design models for tunnels in soft soil. Underground Space, 9(5).
  • 11. Leca, E., Clough, G.W.J., 1992. Preliminary design for NATM tunnel support in soil. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(6): 558-575, DOI: 10.1016/0148-9062(92)92087-s.
  • 12. Huebner, K.H., Dewhirst, D.L., Smith, D.E., Byrom, T.G. The finite element method for engineers. John Wiley and Sons, New York, 2001.
  • 13. Möller, S., 2006. Tunnel induced settlements and structural forces in linings. Ph.D Dissertation. Stuttgart University.
  • 14. Moller, S.C., Vermeer, P.A., 2008. On numerical simulation of tunnel installation. Tunnelling Underground Space Technology, 23: 461-475, DOI: 10.1016/j.tust.2007.08.004.
  • 15. Penzien, J., Wu, C., 1998. Stresses in linings of bored tunnels. Journal of Earthquake Eng. Structural Dynamics, 27: 283–300, DOI: 10.1002/(SICI)1096-9845(199803)27:3<283::AIDEQE732>3.0.CO;2-T.
  • 16. Penzien, Z., 2000. Seismically induced racking of tunnel linings. Int. J. Earthquake Eng. Struct. Dynamic, 29: 683–691, DOI: 10.1002/(SICI)1096-9845(200005)29:5<683::AIDEQE932>3.0.CO;2-1.
  • 17. Naggar, H.E., Hinchberger, S.D., 2008. An analytical solution for jointed tunnel linings in elastic soil or rock. Canadian Geotechnical Journal, 45: 1572-1593, DOI:10.1139/T08-075.
  • 18. Takano, Y.H. Guidelines for the design of shield tunnel lining. 2000. Tunneling and Underground Space Technology, 15(3): 303-331, DOI: 10.1016/S0886-7798(00)00058-4.
  • 19. Zhang, D., Huang, H., Hu, Q., Jiang, F., 2015. Influence of multi-layered soil formation on shield tunnel lining behavior. Tunnelling Underground Space Technology 47(3): 123-135, DOI: 10.1016/j.tust.2014.12.011.
  • 20. Systra. Hanoi Pilot Light Metro Line 3, Section Nhon - Hanoi Railway Station, Package number: HPLMLP/CP-03 (Ver. 2), 2011.
  • 21. http://scedc.caltech.edu/, 09/2018. The Southern California Earthquake Data Center (SCEDC). Data of El Centro earthquake.
  • 22. Nguyen, TA., Nguyen, DA., Vu, VG., Tran, VQ., 2018. Prediction of ground vibration due to blasting: case study in some quarries in Vietnam. Journal of Mining and Earth Sciences 59(3): 1-8.
  • 23. Gospodarikov, AP., Nguyen, TC, 2017. Liquefaction possibility of soil layers during earthquake in Hanoi. International Journal of GEOMATE, 13(39): 148-155, DOI: 10.21660/2017.39.50721.
  • 24. Gospodarikov, AP., Nguyen, TC, 2018. The impact of earthquakes of tunnel linings: A case study from the Hanoi metro system. International Journal of GEOMATE, 14(41): 151-158, DOI: 10.21660/2018.48.26210.
  • 25. Nguyen, TC., Do, NA., Pham, VV., 2021. Research on calculating the effects of earthquakes on the lining tunnel in Hanoi metro system. Journal of Mining and Earth Sciences 62(2): 35 - 46. DOI:10.46326/JMES.2021.62(2).04.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a62a99e2-7f1f-452b-ad78-a678a802db48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.