PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An overview : fate and analysis of marine microplastics with insights into microfluidics, biofilms, and future ecological threats

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pollution associated with microplastics (MP) over time is becoming a genuine cause of concern because these micro-sized plastics possess the ability to accumulate toxic contaminants of diverse types. Their propensity to absorb or adsorb pollutants from the surroundings increases the toxicity of microplastics. Multiple root causes lead to the accumulation of microplastics in aqueous ecosystems, necessitating specialized techniques for investigating, handling, and disposing of them. This overview elaborates on the several modes of degradation of microplastics in aquatic systems. It further provides insights into the novel ‘Microfluidics’ technique for detecting microplastics in marine environments. Additionally, as a rising hope for the degradation of microplastics through biofilm formation, distinct types of bacteria found in marine habitats are discussed in this paper. Finally, this review elucidates the problems associated with microplastic pollution in aquatic ecosystems and explores methods for their safe disposal in the future.
Rocznik
Strony
26--35
Opis fizyczny
Bibliogr. 66 poz., rys., wykr.
Twórcy
  • Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
  • Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
  • Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
  • Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
Bibliografia
  • • 1. Abdel-Aziz, S. M. & A, A. (2014b). Bacterial Biofilm: Dispersal and Inhibition Strategies. Scholarena Journal of Biotechnology, 1(1). DOI:10.18875/2375-6713.1.105
  • • 2. Bakir, A., Rowland, S. J. & Thompson, R. C. (2012). Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Marine Pollution Bulletin, 64(12), pp. 2782-2789. DOI:10.1016/J.MARPOLBUL.2012.09.010
  • • 3. Barboza, L. G. A., Dick Vethaak, A., Lavorante, B. R. B. O., Lundebye, A. K. & Guilhermino, L. (2018). Marine microplastic debris: An emerging issue for food security, food safety and human health. Marine Pollution Bulletin, 133(May), pp. 336–348. DOI:10.1016/j.marpolbul.2018.05.047
  • • 4. Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. (2016). The ecology and biogeochemistry of stream biofilms. [in] Nature Reviews Microbiology (Vol. 14, Issue 4, pp. 251-263). Nature Publishing Group. DOI:10.1038/nrmicro.2016.15
  • • 5. Bremerstein, T., Potthoff, A., Michaelis, A., Schmiedel, C., Uhlmann, E., Blug, B. & Amann, T. (2015). Wear of abrasive media and its effect on abrasive flow machining results. Wear, 342-343, pp. 44-51. DOI:10.1016/j.wear.2015.08.013
  • • 6. Chaukura, N., Kefeni, K. K., Chikurunhe, I., Nyambiya, I., Gwenzi, W., Moyo, W., Nkambule, T. T. I., Mamba, B. B. & Abulude, F. O. (2021). Microplastics in the Aquatic Environment—The Occurrence, Sources, Ecological Impacts, Fate, and Remediation Challenges. Pollutants, 1(2), pp. 95-118. DOI:10.3390/POLLUTANTS1020009
  • • 7. Chen, C., Chen, L., Yao, Y., Artigas, F., Huang, Q. & Zhang, W. (2019). Organotin Release from Polyvinyl Chloride Microplastics and Concurrent Photodegradation in Water: Impacts from Salinity, Dissolved Organic Matter, and Light Exposure. Environmental Science and Technology, 53(18), pp. 10741-10752. DOI:10.1021/ACS.EST.9B03428/SUPPL_FILE/ES9B03428_SI_001.PDF
  • • 8. Choi, J., Kang, M. & Jung, J. H. (2015). Integrated micro-optofluidic platform for real-time detection of airborne microorganisms. Scientific Reports, 5, pp. 1-10. DOI:10.1038/srep15983
  • • 9. Corcoran, P. L. (2021). Degradation of Microplastics in the Environment. [in] Handbook of Microplastics in the Environment, pp. 1-12. Springer International Publishing. DOI:10.1007/978-3-030-10618-8_10-1
  • • 10. De Tender, C., Devriese, L. I., Haegeman, A., Maes, S., Vangeyte, J., Cattrijsse, A., Dawyndt, P. & Ruttink, T. (2017). Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the North Sea. Environmental Science and Technology, 51(13), pp. 7350-7360. DOI:10.1021/ACS.EST.7B00697/SUPPL_FILE/ES7B00697_SI_001.PDF
  • • 11. Demeter, M. A., Lemire, J. A., Mercer, S. M. & Turner, R. J. (2017). Screening selectively harnessed environmental microbial communities for biodegradation of polycyclic aromatic hydrocarbons in moving bed biofilm reactors. Bioresource Technology, 228, pp. 116-124. DOI:10.1016/J.BIORTECH.2016.12.086
  • • 12. Dimassi, S. N., Hahladakis, J. N., Yahia, M. N. D., Ahmad, M. I., Sayadi, S. & Al-Ghouti, M. A. (2022). Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. Arabian Journal of Chemistry, 15(11), 104262. DOI:10.1016/J.ARABJC.2022.104262
  • • 13. Elsayed, A. A., Erfan, M., Sabry, Y. M., Dris, R., Gaspéri, J., Barbier, J. S., Marty, F., Bouanis, F., Luo, S., Nguyen, B. T. T., Liu, A. Q., Tassin, B. & Bourouina, T. (2021). A microfluidic chip enables fast analysis of water microplastics by optical spectroscopy. Scientific Reports, pp. 1-11. DOI:10.1038/s41598-021-89960-4
  • • 14. Farré, M. & Barceló, D. (2020). Microfluidic devices: biosensors. Chemical Analysis of Food: Techniques and Applications, (Second Edition), pp. 287-351. DOI:10.1016/B978-0-12-813266-1.00006-1
  • • 15. Flemming, H. C. & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), pp. 623-633. DOI:10.1038/nrmicro2415
  • • 16. Haiko, J. & Westerlund-Wikström, B. (2013). The role of the bacterial flagellum in adhesion and virulence. Biology, 2(4), pp. 1242-1267. DOI:10.3390/biology2041242
  • • 17. Headley, J. V., Gandrass, J., Kuballa, J., Peru, K. M. & Gong, Y. (1998). Rates of Sorption and Partitioning of Contaminants in River Biofilm. Environmental Science & Technology, 32(24), pp. 3968-3973. DOI:10.1021/ES980499L
  • • 18. Hook, A. L., Chang, C. Y., Yang, J., Luckett, J., Cockayne, A., Atkinson, S., Mei, Y., Bayston, R., Irvine, D. J., Langer, R., Anderson, D. G., Williams, P., Davies, M. C. & Alexander, M. R. (2012). Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology, 30(9), pp. 868-875. DOI:10.1038/nbt.2316
  • • 19. Huston, A. L., Krieger-Brockett, B. B. & Deming, J. W. (2000). Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environmental Microbiology, 2(4), pp. 383-388. DOI:10.1046/j.1462-2920.2000.00118.x
  • • 20. Isobe, A., Uchida, K., Tokai, T. & Iwasaki, S. (2015). East Asian seas: A hot spot of pelagic microplastics. Marine Pollution Bulletin, 101(2), pp. 618-623. DOI:10.1016/J.MARPOLBUL.2015.10.042
  • • 21. Keswani, A., Oliver, D. M., Gutierrez, T. & Quilliam, R. S. (2016). Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments. Marine Environmental Research, 118, pp. 10-19. DOI:10.1016/J.MARENVRES.2016.04.006
  • • 22. Kiran, B. R., Kopperi, H. & Venkata Mohan, S. (2022). Micro/nano-plastics occurrence, identification, risk analysis and mitigation: challenges and perspectives. Reviews in Environmental Science and Biotechnology, 21(1), pp. 169-203. DOI:10.1007/S11157-021-09609-6/TABLES/3
  • • 23. Klein, S., Dimzon, I.K., Eubeler, J., Knepper, T.P. (2018). Analysis, Occurrence, and Degradation of Microplastics in the Aqueous Environment. [In:] Wagner, M., Lambert, S. (eds) Freshwater Microplastics . The Handbook of Environmental Chemistry, vol 58. Springer, Cham. DOI:10.1007/978-3-319-61615-5_3
  • • 24. Konry, T., Bale, S. S., Bhushan, A., Shen, K., Seker, E., Polyak, B. & Yarmush, M. (2012). Particles and microfluidics merged: Perspectives of highly sensitive diagnostic detection. Microchimica Acta, 176(3-4), pp. 251-269. DOI:10.1007/s00604-011-0705-1
  • • 25. Lange, J. P. (2021). Managing Plastic Waste-Sorting, Recycling, Disposal, and Product Redesign. ACS Sustainable Chemistry and Engineering, 9(47), pp. 15722-15738. DOI:10.1021/ACSSUSCHEMENG.1C05013/ASSET/IMAGES/LARGE/SC1C05013_0001.JPEG
  • • 26. Lee, H. J., Song, N. S., Kim, J. S. & Kim, S. K. (2021). Variation and Uncertainty of Microplastics in Commercial Table Salts: Critical Review and Validation. Journal of Hazardous Materials, 402, 123743. DOI:10.1016/J.JHAZMAT.2020.123743
  • • 27. Lorite, G. S., Rodrigues, C. M., de Souza, A. A., Kranz, C., Mizaikoff, B. & Cotta, M. A. (2011). The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. Journal of Colloid and Interface Science, 359(1), pp. 289-295. DOI:10.1016/J.JCIS.2011.03.066
  • • 28. Lu, X. & Xuan, X. (2015). Inertia-enhanced pinched flow fractionation. Analytical Chemistry, 87(8), pp. 4560-4565. DOI:10.1021/ACS.ANALCHEM.5B00752/ASSET/IMAGES/ MEDIUM/AC-2015-007526_0008.GIF
  • • 29. Luo, S., Zhang, Y., Nguyen, K. T., Feng, S., Shi, Y., Liu, Y., Hutchinson, P., Chierchia, G., Talbot, H., Bourouina, T., Jiang, X. & Liu, A. Q. (2020). Machine Learning-Based Pipeline for High Accuracy Bioparticle Sizing. Micromachines, 11(12), 1084. DOI:10.3390/MI11121084
  • • 30. Mark, D., Haeberle, S., Roth, G., von Stetten, F. & Zengerle, R. (2010). Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chemical Society Reviews, 39(3), pp. 1153-1182. DOI:10.1039/b820557b
  • • 31. Martin Alexander, (1971). Microbial Ecology. John Willey & Sons Inc.
  • • 32. Mauk, M. G., Chiou, R., Genis, V. & Carr, E. (2013). Image analysis of microfluidics: Visualization of flow at the microscale. ASEE Annual Conference and Exposition, Conference Proceedings. DOI:10.18260/1-2--19693
  • • 33. Mekaru, H. (2020). Effect of Agitation Method on the Nanosized Degradation of Polystyrene Microplastics Dispersed in Water. ACS Omega, 5(7), pp. 3218-3227. DOI:10.1021/ACSOMEGA.9B03278/ASSET/IMAGES/LARGE/AO9B03278_0006.JPEG
  • • 34. Oberbeckmann, S., Löder, M. G. J. & Labrenz, M. (2015). Marine microplastic-associated biofilms - a review. Environmental Chemistry, 12(5), pp. 551-562. DOI:10.1071/EN15069
  • • 35. Osman, A. I., Hosny, M., Eltaweil, A. S., Omar, S., Elgarahy, A. M., Farghali, M., Yap, P. S., Wu, Y. S., Nagandran, S., Batumalaie, K., Gopinath, S. C. B., John, O. D., Sekar, M., Saikia, T., Karunanithi, P., Hatta, M. H. M. & Akinyede, K. A. (2023). Microplastic sources, formation, toxicity and remediation: a review. Environmental Chemistry Letters, 21(4), pp. 2129-2169. DOI:10.1007/S10311-023-01593-3
  • • 36. Pattanayak, P., Singh, S. K., Gulati, M., Vishwas, S., Kapoor, B., Chellappan, D. K., Anand, K., Gupta, G., Jha, N. K., Gupta, P. K., Prasher, P., Dua, K., Dureja, H., Kumar, D. & Kumar, V. (2021). Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluidics and Nanofluidics, 25(12), pp. 1-28. DOI:10.1007/S10404-021-02502-2/FIGURES/17
  • • 37. Pauli, N. C., Petermann, J. S., Lott, C. & Weber, M. (2017). Macrofouling communities and the degradation of plastic bags in the sea: An in situ experiment. Royal Society Open Science, 4(10). DOI:10.1098/rsos.170549
  • • 38. Qiu, X., Qi, Z., Ouyang, Z., Liu, P. & Guo, X. (2022). Interactions between microplastics and microorganisms in the environment: Modes of action and influencing factors. Gondwana Research, 108, pp. 102-119. DOI:10.1016/J.GR.2021.07.029
  • • 39. Regnault, C., Dheeman, D. S. & Hochstetter, A. (2018). Microfluidic Devices for Drug Assays. High-Throughput, 7(2), p 18. DOI:10.3390/HT7020018
  • • 40. Ren, K., Zhou, J. & Wu, H. (2013). Materials for microfluidic chip fabrication. Accounts of Chemical Research, 46(11), pp. 2396-2406. DOI:10.1021/ar300314s
  • • 41. Renner, L. D. & Weibel, D. B. (2011). Physicochemical regulation of biofilm formation. MRS Bulletin, 36(5), pp. 347-355. DOI:10.1557/MRS.2011.65
  • • 42. Romera-Castillo, C., Pinto, M., Langer, T. M., Álvarez-Salgado, X. A. & Herndl, G. J. (2018). Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nature Communications, 9(1), pp. 1-7. DOI:10.1038/s41467-018-03798-5
  • • 43. Rosenberg, M., Bayer, E. A., Delarea, J. & Rosenberg, E. (1982). Role of Thin Fimbriae in Adherence and Growth of Acinetobacter calcoaceticus RAG-1 on Hexadecane. Applied and Environmental Microbiology, 44(4), pp. 929-937. DOI:10.1128/AEM.44.4.929-937.1982
  • • 44. Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D. & Schmitt-Jansen, M. (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environmental Science and Technology Letters, 4(7), pp. 258-267. DOI:10.1021/ACS.ESTLETT.7B00164/ASSET/IMAGES/LARGE/EZ-2017-00164X_0001.JPEG
  • • 45. Russell, N. J. (1990). Cold adaptation of microorganisms. Philosophical Transactions - Royal Society of London, B, 326(1237), pp. 595-611. DOI:10.1098/rstb.1990.0034
  • • 46. Sauer, K. (2003). The genomics and proteomics of biofilm formation. Genome Biology, 4(6), pp. 1-5. DOI:10.1186/GB-2003-4-6-219/FIGURES/1
  • • 47. Sgier, L., Freimann, R., Zupanic, A. & Kroll, A. (2016). Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics. Nature Communications, 7(1), pp. 1-10. DOI:10.1038/ncomms11587
  • • 48. Shrirao, A. B., Fritz, Z., Novik, E. M., Yarmush, G. M., Schloss, R. S., Zahn, J. D. & Yarmush, M. L. (2018). Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification. Technology, 06(01), pp. 1-23. DOI:10.1142/s2339547818300019
  • • 49. Teuten, E. L., Rowland, S. J., Galloway, T. S. & Galloway, T. S. (2007). Potential for Plastics to Transport Hydrophobic Contaminants. ACS Publications, 41(22).
  • • 50. Tokiwa, Y. & Calabia, B. P. (2004). Degradation of microbial polyesters. Biotechnology Letters, 26(15), pp. 1181-1189. DOI:10.1023/B:BILE.0000036599.15302.E5/METRICS
  • • 51. Tu, C., Zhou, Q., Zhang, C., Liu, Y. & Luo, Y. (2020). Biofilms of Microplastics. Handbook of Environmental Chemistry, 95, pp. 299-317. DOI:10.1007/698_2020_461
  • • 52. Vaid, M., Sarma, K. & Gupta, A. (2021). Microplastic pollution in aquatic environments with special emphasis on riverine systems: Current understanding and way forward. Journal of Environmental Management, 293, 112860. DOI:10.1016/J.JENVMAN.2021.112860
  • • 53. Verma, R., Vinoda, K. S., Papireddy, M. & Gowda, A. N. S. (2016). Toxic Pollutants from Plastic Waste- A Review. Procedia Environmental Sciences, 35, pp. 701-708. DOI:10.1016/J.PROENV.2016.07.069
  • • 54. Wang, M. H., He, Y. & Sen, B. (2019). Research and management of plastic pollution in coastal environments of China. Environmental Pollution, 248, pp. 898-905. DOI:10.1016/J.ENVPOL.2019.02.098
  • • 55. Wang, T., Wang, L., Chen, Q., Kalogerakis, N., Ji, R. & Ma, Y. (2020). Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. Science of the Total Environment, 748, 142427. DOI:10.1016/j.scitotenv.2020.142427
  • • 56. Wellner, N. (2013). Fourier transform infrared (FTIR) and Raman microscopy: principles and applications to food microstructures. Food Microstructures: Microscopy, Measurement and Modelling, pp. 163-191. DOI:10.1533/9780857098894.1.163
  • • 57. Wimpenny, J. W. T. (1996). Laboratory growth systems in biofilm research. Cells and Materials, 6(1-3), pp. 221-232.
  • • 58. Wright, S. L. & Kelly, F. J. (2017). Plastic and Human Health: A Micro Issue? Environmental Science and Technology, 51(12), pp. 6634-6647. DOI:10.1021/acs.est.7b00423
  • • 59. Writer, J. H., Ryan, J. N. & Barber, L. B. (2011). Role of biofilms in sorptive removal of steroidal hormones and 4-nonylphenol compounds from streams. Environmental Science and Technology, 45(17), pp. 7275-7283. DOI:10.1021/es2008038
  • • 60. Wu, Y., Xia, L., Yu, Z., Shabbir, S. & Kerr, P. G. (2014). In situ bioremediation of surface waters by periphytons. Bioresource Technology, 151, pp. 367-372. DOI:10.1016/j.biortech.2013.10.088
  • • 61. Yong, C. Q. Y., Valiyaveettil, S. & Tang, B. L. (2020). Toxicity of Microplastics and Nanoplastics in Mammalian Systems. International Journal of Environmental Research and Public Health, 17(5), 1509. DOI:10.3390/IJERPH17051509
  • • 62. Yu, Y., Li, H., Zeng, Y. & Chen, B. (2009). Extracellular enzymes of cold-adapted bacteria from Arctic sea ice, Canada Basin. Polar Biology, 32(10), pp. 1539-1547. DOI:10.1007/s00300-009-0654-x
  • • 63. Zhang, K., Hamidian, A. H., Tubić, A., Zhang, Y., Fang, J. K. H., Wu, C. & Lam, P. K. S. (2021). Understanding plastic degradation and microplastic formation in the environment: A review. Environmental Pollution, 274, 116554. DOI:10.1016/J.ENVPOL.2021.116554
  • • 64. Zhang, Y., Kang, S., Allen, S., Allen, D., Gao, T. & Sillanpää, M. (2020). Atmospheric microplastics: A review on current status and perspectives. Earth-Science Reviews, 203, 103118. DOI:10.1016/j.earscirev.2020.103118
  • • 65. Zhang, Y., Zhang, M. & Fan, Y. (2022). Assessment of microplastics using microfluidic approach. Environmental Geochemistry and Health, 45(3), pp. 1045-1052. DOI:10.1007/S10653-022-01262-4/METRICS
  • • 66. Zhu, K., Jia, H., Zhao, S., Xia, T., Guo, X., Wang, T. & Zhu, L. (2019). Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation. Environmental Science and Technology, 53(14), pp. 8177-8186. DOI:10.1021/ACS.EST.9B01474/SUPPL_FILE/ES9B01474_SI_001.PDF
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a6272c5f-68d0-475a-b311-0a0cf38fdda7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.