Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
System wykrywania ciał obcych przy użyciu GoogLeNet
Języki publikacji
Abstrakty
he article presents the concept of a vision system for Foreign Object Debris (FOD) detection in the airport environment, based on the GoogLeNet network. The authors present the motivation for the research carried out and the preliminary tests carried out at the Pozna-Ławica Airport and present the developed model of a convolutional neural network with an accuracy of 95.73%. The FOD-A dataset containing more than 19,000 images taken under various weather conditions was used to train the model to ensure the diversity of the dataset.
Artykuł przedstawia koncepcję systemu wizyjnego do wykrywania ciał obcych Foreign Object Debris (FOD) w środowisku lotniskowym, opartego na sieci GoogLeNet. Autorzy przedstawiają motywację do podjętych badań i wstępne testy przeprowadzane w Porcie Lotniczym Poznań - Ławica oraz prezentują opracowany model konwolucyjnej sieci neuronowej o dokładności 95,73%. Do treningu modelu wykorzystano bazę FOD-A zawierającą ponad 19 000 obrazów, wykonanych w różnych warunkach atmosferycznych, aby zapewnić różnorodność bazy danych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
249--252
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Poznan University of Technology, Institute of Automatic Control and Robotics, Division of Electronic Systems and Signal Processing, ul. Jana Pawła II 24, 60-965 Poznań
autor
- Poznan University of Technology, Institute of Automatic Control and Robotics, Division of Electronic Systems and Signal Processing, ul. Jana Pawła II 24, 60-965 Poznań
Bibliografia
- [1] “AC 150/5210-24 - Airport Foreign Object Debris (FOD) Management.” Federal Aviation Administration, Sep. 30, 2010. [Online]. Available: https://www.faa.gov/documentLibrary/media/Advisory_Circular/ AC_150_5210-24.pdf
- [2] European Union Aviation Safety Agency, “Certification Specifications and Guidance Material for Aerodrome Design (CS-ADR-DSN).” Mar. 29, 2022. Accessed: Jun. 30, 2022. [Online]. Available: https://www.easa.europa.eu/en/downloads/136283/en
- [3] “Foreign Object Debris.” https : / / www . boeing . com / commercial / aeromagazine/aero_01/textonly/s01txt.html
- [4] “Concorde Crashes, Killing Total of 113 And Putting Jets’ Future in Question,” The Wall Street Journal. https://www.wsj.com/articles/SB964574859870269692
- [5] J. Suder, P. Maciejewski, K. Podbucki, T. Marciniak, and A. Dąbrowski, “Measuring Platform for Quality Testing of Airport Lamps,” Pomiary Autom. Robot., vol. 23, no. 2, pp. 5–13, Jun. 2019, doi: 10.14313/PAR_232/5.
- [6] J. Suder, K. Podbucki, T. Marciniak, and A. Dąbrowski, “Spectrum sensors for detecting type of airport lamps in a light photometry system,” Opto-Electron. Rev., vol. 29, no. 4, pp. 133–140, 2021, doi: 10.24425/OPELRE.2021.139383.
- [7] K. Podbucki, J. Suder, T. Marciniak, and A. Dąbrowski, “Elektroniczna matryca pomiarowa do badania lamp lotniskowych,” PRZEGLĄD ELEKTROTECHNICZNY, vol. 1, no. 2, pp. 49–53, Feb. 2021, doi: 10.15199/48.2021.02.12.
- [8] K. Podbucki, J. Suder, T. Marciniak, W. Mańczak, and A. Dąbrowski, “Microprocessor-based photometric light intensity sensor for airport lamps quality testing,” Opto-Electronics Review, vol. 30, no. 4. Polish Academy of Sciences and Association of Polish Electrical Engineers in cooperation with Military University of Technology, p. e143396, 2022. doi: 10.24425/opelre.2022.143396.
- [9] J. Suder, “Parameters evaluation of cameras in embedded systems,” PRZEGLĄD ELEKTROTECHNICZNY, vol. 1, no. 9, pp. 218–221, Sep. 2022, doi: 10.15199/48.2022.09.50.
- [10] J. Suder, K. Podbucki, T. Marciniak, and A. Dąbrowski, “Intelligent vision system for quality classification of airport lamp prisms,” in 2022 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2022, pp. 151–154. doi: 10.23919/SPA53010.2022.9927908.
- [11] J. Suder, “Możliwości przetwarzania sekwencji wizyjnych w systemach wbudowanych,” PRZEGLĄD ELEKTROTECHNICZNY, vol. 1, no. 1, pp. 190–193, Jan. 2022, doi: 10.15199/48.2022.01.41.
- [12] J. Suder, K. Podbucki, T. Marciniak, and A. Dąbrowski, “Low Complexity Lane Detection Methods for Light Photometry System,” Electronics, vol. 10, no. 14, 2021, doi: 10.3390/electronics10141665.
- [13] K. Podbucki, J. Suder, T. Marciniak, and A. Dabrowski, “Evaluation of Embedded Devices for Real- Time Video Lane Detection,” in 2022 29th International Conference on Mixed Design of Integrated Circuits and System (MIXDES), Wrocław, Poland, Jun. 2022, pp. 187–191. doi: 10.23919/MIXDES55591.2022.9838167.
- [14] ICAO, AERODROMES: aerodromes design and operations. Place of publication not identified: ICAO, 2018.
- [15] A. Elrayes, M. H. Ali, A. Zakaria, and M. H. Ismail, “Smart airport foreign object debris detection rover using LiDAR technology,” Internet Things, vol. 5, pp. 1–11, Mar. 2019, doi: 10.1016/j.iot.2018.11.001.
- [16] Xu Qunyu, Ning Huansheng, and Chen Weishi, “Video-based Foreign Object Debris detection,” in 2009 IEEE International Workshop on Imaging Systems and Techniques, Shenzhen, China, May 2009, pp. 119–122. doi: 10.1109/IST.2009.5071615.
- [17] E. Papadopoulos and F. Gonzalez, “UAV and AI Application for Runway Foreign Object Debris (FOD) Detection,” in 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, Mar. 2021, pp. 1–8. doi: 10.1109/AERO50100.2021.9438489.
- [18] P. Li and H. Li, “Research on FOD Detection for Airport Runway based on YOLOv3,” in 2020 39th Chinese Control Conference (CCC), Shenyang, China, Jul. 2020, pp. 7096– 7099. doi: 10.23919/CCC50068.2020.9188724.
- [19] Y. Jing, H. Zheng, C. Lin, W. Zheng, K. Dong, and X. Li, “Foreign Object Debris Detection for Optical Imaging Sensors Based on Random Forest,” Sensors, vol. 22, no. 7, p. 2463, Mar. 2022, doi: 10.3390/s22072463.
- [20] T. Munyer, D. Brinkman, C. Huang, and X. Zhong, “Integrative Use of Computer Vision and Unmanned Aircraft Technologies in Public Inspection: Foreign Object Debris Image Collection,” in DG.O2021: The 22nd Annual International Conference on Digital Government Research, Omaha NE USA, Jun. 2021, pp. 437–443. doi: 10.1145/3463677.3463743.
- [21] T. Munyer, P.-C. Huang, C. Huang, and X. Zhong, “FOD-A: A Dataset for Foreign Object Debris in Airports,” 2021, doi: 10.48550/ARXIV.2110.03072.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a626719c-7a0e-4cb8-aa69-d85bf34b40e0