PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza porównawcza zakresów stabilności wybranych estymatorów prędkości silnika indukcyjnego typu MRAS

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Comparative analysis of stability ranges of selected induction motor speed estimators type MRAS
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawione zostało porównanie zakresów stabilności estymatorów prędkości MRASCV oraz MRASCC jak również estymatora MRASCC z zastosowaniem metody poprawy stabilności w generatorowym trybie pracy. Analiza teoretyczna potwierdzona została wynikami badań symulacyjnych i eksperymentalnych.
EN
In this article a comparison of stability ranges of speed estimators MRASCV and MRASCC, as well estimator MRASCC with application of stability extension method in regenerating mode was presented. Theoretical analysis was validate by simulation and experimental result.
Rocznik
Strony
90--94
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Politechnika Wrocławska, Katedra Maszyn, Napędów i Pomiarów Elektrycznych, ul. Smoluchowskiego 19, 50-372 Wrocław
Bibliografia
  • [1] Orłowska Kowalska T., Bezczujnikowe układy napędowe, Oficyna Wydawnicza Politechniki Wrocławskiej, (2003)
  • [2] Kaźmierkowski M. P., Blaabjerg F. and Kirshnan R., Control in Power Electronic – Selected Problems, Academic Press,(2002)
  • [3] Holtz J., Sensorless Control of Induction Machines – With or Without Signal Injection?, IEEE Trans. Ind. Electron., 53, (2006), n.1, 7-30
  • [4] Korzonek M., Orłowska-Kowalska T., Analiza stabilności estymatora prędkości MRASCC podczas osłabienia strumienia w generatorowym trybie pracy napędu indukcyjnego, Przegląd Elektrotechniczny. 93, (2017), n.5, 152-157
  • [5] Kubota H, Matsuse K. and Nakano T., DSP-based speed adaptive flux observer of induction motor, IEEE Trans. Ind. Appl., 29, (1993), n.2, 344-348
  • [6] Barut M., Bogosyan S. and Gokasan M., Speed-sensorless estimation for induction motors using Extended Kalman filters, IEEE Trans. Ind. Electron., 54, (2007), n.1, 272-280
  • [7] Schauder C., Adaptive speed identification for vector control of induction motors without rotational transducers, IEEE Trans. Ind. Appl., 28, (1992), n.5, 1054-1061
  • [8] Peng F. Z. and Fukao T., Robust speed identification for speed-sensorless vector control of induction motors, IEEE Trans. Ind. Appl., 30, (1994) n.5, 1234-1240
  • [9] Sobczuk D., Application of ANN for control of PWM inverter fed induction motor drives, Ph.D. dissertation, Warsaw Univ. of Technology, (1999)
  • [10] Dybkowski M. and Orłowska-Kowalska T., Application of the stator current-based MRAS speed estimator in the sensorless induction motor drive, 13th International Power Electronics and Motion Control Conference, EPE-PEMC, (2008), 2306-2311
  • [11] Verma V. and Chakraborty Ch., New series of MRAS for speed estimation of vector controlled induction motor drive, in Proc. 40th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), (2014), 755-761
  • [12] Tarchała G., Orlowska-Kowalska T. and Dybkowski M., Slidingmode direct torque control and sliding-mode observer with a magnetizing reactance estimator for the field-weakening of the induction motor drive, Math. Comput. Simul., 98, (2014), 31-45
  • [13] Kumar R., Das S., Syam P. and Chattopadhyay A. K., Review on model reference adaptive system for sensorless vector control of induction motor drives, IET Electr. Power Appl., 9, (2015), n.7, 496-511
  • [14] Kubota H., Satao I, Tamura Y, et al., Regenerating-mode lowspeed operation of sensorless induction motor drive with adaptive observer, IEEE Trans. Ind. Appl., 38, (2002), n.4, 1081-1086
  • [15] Sunwankawin S. and Sangwongwanich S., Design strategy of an adaptive full-order observer for speed-sensorless induction motor drive – Tracking performance and stabilization, IEEE Trans. Ind. Electron., 53, (2006), n.1, 96-119
  • [16] Hinkkanen M. and Luomi J., Stabilization of regenerating-mode operation in sensorless induction motor drives by full-order flux observer design, IEEE Trans. Ind. Electron., 51, (2004), n.6, 1318-1328
  • [17] Etien E., Chainge C. and Bensiali N., On the Stability of Full Adaptive Observer for Induction Motor in Regenerating Mode, IEEE Trans. Ind. Electron., 57, (2010), n.5, 1599-1608
  • [18] Vonkomer J. and Zalman M., On the stability of current based MRAS, in Proc. 39th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), (2013), 3018-3023
  • [19] Korzonek M., Orłowska-Kowalska T., Stability analysis of MRASCC speed estimator in motoring and regenerating mode, Power Electronics and Drives, 1(36), (2016), n.2, 113-131
  • [20] Korzonek M., Orłowska-Kowalska T., Tarchała G., Stability analysis of selected speed estimators for induction motor drive in regenerating mode: a comparative study, IEEE Trans. on Ind. Electron.. (2017), 1-10, (early access)
  • [21] Orłowska-Kowalska T., Dybkowski M., Stator current-based MRAS speed estimator for wide range speed sensorless induction motor drive, IEEE Trans Ind. Electron., 57, (2010), n.4, 1296-1308
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a61ef99a-e2bb-47e1-8263-9556fb7fa894
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.