Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents automatic eye corners detection algorithms in thermal images. Its target application is to perform quick and unnoticed measurement of human body temperature. It is proved that the temperature of eyes’ corners is the most reliable and stable temperature considering infrared imaging. That measurements were done manually so far. Our approach is to do this automatically and create complete system for measurement of core human body temperature in crowded places where it is impossible to do this in another way (for example on the airport, railway station). Such system could prevent people for spreading off the epidemic. Two proposed algorithms are presented: first based on morphological operations and geometric features of human face, second based on the cross-correlation and idea of pattern tracking. The selection of appropriate ROI size for reliable temperature extraction was tested according to the distance to person under observation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
199--202
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
- Lodz University of Technology, Inst. of Electronics, 90-924 Łódź, Wólczańska 211/215 St.
autor
- Lodz University of Technology, Inst. of Electronics, 90-924 Łódź, Wólczańska 211/215 St.
Bibliografia
- [1] Ring E. F. J., Jung A., Zuber J., Rutowski P., Kalicki B., Bajwa U.: Detecting Fever in Polish Children by Infrared Thermography. 9th International Conference on Quantitative InfraRed Thermography, Krakow, Poland, July 2-5, 2008.
- [2] Ring E. F. J., McEvoy H., Jung A., Żuber J., Machin G.: New standards for devices used for the measurement of human body temperature. Journal of Medical Engineering & Technology, vol. 34, no. 4, May 2010, pp. 249–253.
- [3] Rajpathaka T., Kumar R., Schwartz E.: Eye Detection Using Morphological and Color Image Processing, 2009 Florida Conference on Recent Advances in Robotics, FCRAR 2009.
- [4] Peng K., Chen L., Ruan S., Kukharev G.: A Robust and Efficient Algorithm for Eye Detection on Gray Intensity Face, S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 302–308, 2005. Springer-Verlag Berlin Heidelberg 2005.
- [5] Kong S. G., Heo J., Abidi B. R., Paik J., Abidi M. A.,: Recent advances in visual and infrared face recognition a review, Computer Vision and Image Understanding 97 (2005) 103–135.
- [6] Peer P., Solina F.: An Automatic Human Face Detection Method, Computer Vision Winter Workshop, Ed. N. Brändle, pp. 122-130, Rastenfeld, Austria, February 1999.
- [7] Saad A., Rosenfeld S., Rosenfeld A.: Eye detection in a face image using linear and nonlinear filters, Pattern Recognition, vol. 34, Issue 7, 2001, Pages 1367-1391.
- [8] Budzan, S.: System detekcji twarzy i oczu w obrazach 2D z wykorzystaniem transformaty.
- [9] Strakowska M., Strzelecki M.: Algorytm automatycznej detekcji kącików oczu w obrazach termowizyjnych, Pomiary Automatyka Kontrola, nr. 10, s. 1104-1107, 2011.
- [10] Strakowska M., Strakowski R., Wiecek B., Strzelecki M.: Cross-correlation based movement correction method for biomedical dynamic infrared imaging, 11th International Conference on Quantitative InfraRed Thermography, 11-14 June 2012, Naples-Italy, ISBN 9788890648441.
- [11] Nałęcz M.: Obrazowanie biomedyczne Tom 8., Akademicka Oficyna Wydawnicza EXIT, Warszawa 2003, ISBN: 83-87674-63-X.
- [12] Więcek B., Strakowska M., Strakowski R., Strzelecki M., Wybrane biomedyczne zastosowania termowizji, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowska, nr 1, 2011, str. 24-27.
- [13] Otsu N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on systems, Man, And Cybernetics, vol. SMC-9, no. 1, January 1979.
- [14] Vincent L.: Morphological Gray scale Reconstruction in Image Analysis: Applications and Efficient Algorithms, IEEE Transactions on image processing, vol. 2, no. 2, April 1993.
- [15] Soille P.: Morphological Image Analysis: Principles and application Second Edition, ISBN 3-540-42988-3 Springer-Verlag Berlin Heidelberg New York, 2002, s. 203-206.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a61c5004-4f53-4c21-9341-47360bf5847b